Download Wave Function and Schsodinger Wave Equation and more Study notes Quantum Mechanics in PDF only on Docsity!
Unite “LL a tave + frmcti OWA CAAA al t | aecmmaeeelle HC ‘edge Wave Equatio rave equation for a tree particle Ne know that a matkotat partite i in mOHOn LE ASiociated Ith ale - byp ie weve voith a Loavel euptt A anol Me phan VD. “The oe the. particle can ke WYMHen ay, BO.” 2c [P= ar, Rk oi is Ware vechr or propagation Coust. Exergy +, He partite Can be Crtpreseal af * E= hd = -2NP = tw JE=+0] —_@ The dtwhlest ktnol usave is the plane monochromatic usave Social mr usave bynction : w (Kt) = A exp [i (Ri -wt)] A 4&8 amplitude oy Usave , AF 20 — wavelenath , oh we Assume propapation to be along H-anis, then we ve, xe = ku ; Now, we gt wen tye A-expfi {fox wt] —@) wasing eq” Or@, eq” (DS becomes y(ut)e A eat ( px-et)) ~ Keak “Hy dy the eupragion for the wane lun plu 1) > a parkete im mOhou in the 4ve ue clirectien with Wome nfun, p And Totar Cte rap E. Differ cutiate eg" (4) wort. Uw ba - oe (px- et) nu hi B by = “h Ov T on = th ov Py Fe Ow SiHoertiak 4" ©) wrt 1 again, om _ 5h GSR) py fe "ee —@® Sheet eqh (4) lorb. £ . +t "AL J bee VAC aon tk) Ete Mle ) Sete oY REY ——® ie amass beside : °} Character seal the potentral Chenay fuuchen eq Ue now cowicer the portiche to ke tua [cietot V(#t) , then The total energy of partite be E=- PL let Be) © Potential etal fr fuuchion olsts not dapend ou P 2 E do @” ly E ¥(@,t) = (f. v) yl#,t) “| R ¢(#,t) = = Vv (2, tt Vy (#, v|-@ L : \ / This 46 2-D Time che pe nderet Schavelivge y Weve a parhcle Characterised ty P.-E. fun Ge t), v 40, eq” Is (a) — now jin ae oY -Hy| Whore H= Po vle RV | Vv 2m am A This i known at Hamilbornian 6 perator. =-(-w 2? Edu (- ad ve ju Ed = he 274 + v4 2m ode kK 2 7 2m on E¢ -v# =o 7). Om ice = [32 + led = | —© Md ba funct on %} 1“ only in [-D, 20 we Can unite Xd 2 d*d. rks At <> as 1a eq”(5) uation rm qi + Salevar 0 J |-D sime independent Schyodingte woe €4 mM 3D, dF ua funchow Of Pie GHZ) | | po, gh © in HD ay" com be wort es Tyra [z+ am (E-4)= 0| _® OE hoe yra(e)> 28 , Od» 4 gue age da? eg" (Q) Can be voniHtu as, ; Pavan} 4 - £4(z) —® 2m The Joleton > this can be definesl a SEO = 1) ee : or ED eH —@® | This particular cetution the bth wu hirger equate &"- vohy this ad stationary 7) L, Protabidily olewity 4 Stationary ie it does yot end on Time, peep ft cay | : ~ heal? cows YY” ib independent af Hime Le. stake of the syst tx tate 0 Ae stationary Atote. en & Ae finest os Hd =e? . [Hy Go €e(e) | The dolution that Aatis ly this efration Qre called eigen functions i n- ue ten values Mr¢ lisorete Ayr Lounad States And Continues Ipr [pce States. Each allnweol Chepy Ey is referred as Energy level or uantized &u Cike , 4 (y2) — Qu le So pumeti im Ben ben ¢ Yr Dhtervabte: OF is the quantity ebtaintl ay a Aesult haalehns an OlbtervaHou Gr Wmeaturenent Ou a wee physical System. * Coninnuctator fCgeboa Dt, fcommatshy: |[a, a)- Ae — 6a |* [A, tee) = (Ab) + LA2) [Ave ¢) - (A, e)+ Lae] [Abe Je [A b)e+ FA, 4) [Abc] - (A,e] 6+ ACE¢) (ad) + [8,CeAlls [é,(Ae}- 6 Commution Flaton for osiion ond sirens p= ih ” iHeu Bhe G i 2 aud 2 ( Poitou Sf rat) ( momnentoa Shera) Methed —T Ope, hye (ee he Ran ‘(eared SS = th 22¥ op ov ih ou orn i 2} af {—_____ mer | om [mY 7? © _ Cie) m-th & ou U2 _ 2. iy th | | 2 ” on uw Now _ 2. a ~Th (-!) =]in | Aa. on FL%4] = a MOY Oh y = wdy a, ar in fap * pe | jh | + [ik] | B- 2%) . | 7h be | @ Now, formula ad ce pels ow Value ole peusld on the “Concdittou ph the Wave function y is prspey NOr malized, _ |
0 21 expectation value ) r\! | @ ¥(*) Ne~(Ka)t iro tind the erhectation value oh peri tion aud momentin. ; —/ HM \4 tee fou C £,)-ie ~-u-Ne (35 ds _ i * \ _.exidoao dt *. N*N | fee) yw ~ 7 * ll x. dx = O 2 N*™N é aX Ww oP ~{ Lur = 0 ' Pr ype (a) tee tg ae Be ob