Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Unit 3 , wave optics, Lecture notes of Engineering Physics

Engineering physics unit 3 of wave optics

Typology: Lecture notes

2022/2023

Uploaded on 11/20/2023

light-dhruv
light-dhruv 🇮🇳

1 document

1 / 21

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Al
Hdistaste
ts,
s
stc
bo
ta
fiuya
is
,it
trcl
(-1)t
=
o
Kntwig
L,
t
odistate
Hscus
uwlicl
ta
Ceial
72Ugts
ptel,
D,ol,
auolA
ta
ttwekiess
of
the
thanspahtn
blat
Can
b
CalcwNotao
Jteiolenu
m thiw
f)rdi
twtom
and
Hozrke
c-SCaol
anol
oleeiopLe
h
T susgaLL
oG
thin
thasbasu
matisiab.
Eeiyce
s
tunuial
ut
+the
bauttl
lolouii
hecuciol
bya
th
int
ef
ol
om
th
ifacr
of
wdt
ano
also
by
the
t n
ef
eab
bublalu.
Heke
chiindl
ok
Suc
Colais
Huin
fiuns
ot
mica
al
Smias
tin
tiausalt
tohan
a
Comex
n
was
placed
n a
hlane
gloss-
blt
Yang
as
ubl
to
erpa
tha
plenomnM
n
ta
bosis
intiitstnee
hhutn
lig
suftetad
f2m
tHa
tbb
ao
ta
botto1
Susfaa
ot
tn
n.
4h
kas
heCn
chseivecd
Hha
iniAsLne
tt
Caa
o
tan
ns
takus
platt
du
tob
ucted
kizh
cund
(20)
Hansmittod
Lig
Intlhn
dus to
hauebd
AizE
Cena'ols
a
tianspaunl
plm
thuckus
t
and
ns
þastly
ufcttd
aleg
AT
and
þastly
fautcd
aloy
A
P.
Cu
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15

Partial preview of the text

Download Unit 3 , wave optics and more Lecture notes Engineering Physics in PDF only on Docsity!

Al Hdistaste ts, s stc bo ta fiuya is ,it trcl

(-1)t =

o Kntwig^ L,^ t^ odistate^ Hscus^

uwlicl ta^ Ceial

72Ugts ptel,^ D,ol,^ auolA^

ta ttwekiess (^) of the^ thanspahtn

blat Can b CalcwNotao

Jteiolenu m thiw f)rdi

twtom and^ Hozrke^

c-SCaol anol^ oleeiopLe^ h

T susgaLL^ oG^

thin thasbasu^

matisiab. Eeiyce^

s

tunuial ut^ +the^ bauttl^

lolouii hecuciol^ bya^ th

int ef^ ol^ om^

th (^) ifacr of wdt^

ano also^ by the

t n^ ef^ eab^

bublalu. Heke^ chiindl^

ok (^) Suc

Colais Huin^ fiuns^ ot^

mica (^) al Smias^

tin tiausalt

tohan a^ Comex^ n^

was (^) placed n^ a^ hlane^ gloss-

blt

Yang as^ ubl^

to erpa tha^ plenomnM^

n ta^ bosis

intiitstnee hhutn^ lig^

suftetad f2m^

tHa (^) tbb ao

ta botto1^ Susfaa^ ot^

tn (^) n. 4h^ kas^ heCn^ chseivecd

Hha iniAsLne tt^

Caa (^) o tan ns^

takus platt

du tob

ucted kizh^ cund^ (20)^

Hansmittod (^) Lig

Intlhn dus^ to^

hauebd AizE

Cena'ols a tianspaunl

plm thuckust^

and

ns þastly ufcttd

aleg AT^ and^ þastly fautcd aloy^ A^ P.

Cu

2t G Conoluticn otMaoima

At (^) P>trird (^) i5 s (^) etlectia alo Cuu (^) jvully (^) uuigus

AT (^) Cul (^) C6 (^) Cas (^) Calculuc. (^) D cN (^) USnmal ~t AT (^) G AM (^) L (^) al to (^) b, TLCugu c (^) ieiolkte isi d th C (^) acho1 is^.^ ALS hrrcl (^) cb (^) uet (^) AE peds cP. Hi LAPC

Tk

opbical (^) puth (^) oitnt = (^) aH AbC (^) iw iUn - þat AM

(ASCASt^ )^ -^ AM

AH

CM

AN nCM

(AB+ Bc)^ -^ MCM

AB T-CM)^

= (^) *(PC-CM) In tta APM) C PM AP PM AP^ CAS^ =^ CAE+EP) (AA 2t Cos Ae-P-2)

-PM

Thi equution i), m t Cal ohhctud igk dets no

pebu t Cosu peu cufiute bu oly t appauu

las hecn estabundd m He basis of elachmoyuhie

Thcy ttar, uken Ai_ur is hfhctid 2onHa Ssfau c Cul epttally ceLSeS mdliwrl (ais midum intiltAL) a pha

changeT equivalunt a pat c c Acs

Costuch bitia tokus plocu anci thm u apbas

2AtC.=/lA

2At C =

n

Cae (^) c +ansmittd^ gl^

ttniiir ugs

Chtainol (^) a (^) a ohstuh^ hcau^

ttu (^) c iu cu

ntokente a^ wuwge-shabed^ um

Co siolu a^ welgL - SLapud

ecloseol (^) by hut (^) hlat

Siiatts cP uel C&

welinc ala an_u &. TL tiec kJuss c th

C to P. wlen thi

fin s illuminattd

y a cosallel ba

t ays^ fhctud^ a^

ta (^) uphti ot^ ad^ less^ Sutatus

Ha tiun^ jo^ ta^ equicistaw^ aites/na^

daik asu^ Bl

c ADand^ dê^ j^ bet^ iiginaihg^ iom^

t Sama^ incidsdSoy SA (^) T6 eyaluat H (^) baH otiltut^ buuean^ tie^ two^ hay t (^) pesbendtculaRi dK^ and^ N^ aA^ daun^ sm^ en^ AB Cnd At^ heshectively. Tu^ u oduit iue^ tei^ tut

= (AC+CD)u i^

  • AK t ail

= AC+CD)- AK

  • (^) AM+NC +CD) - A

cm inbl 9aommitiy^ ito^ be^ ihown^

tar

ADK = 2 d LADN=

S AK/AD

AMADStu^

AK AM

AK pAN

AN +^ MC+^ Cp)^ -^ AM

These uh a

Sc LCM^ LuMe^ t

LM= LCML = 90

Ond (^) CMis Cov, (^) ttehdor

DME ML^ =^ t Cd CD^ CL

A= NC^ +M^ CL^

= HCCL) = N

As (^) ta ara entls^

hetuen te^ Awilates^

oPand c&^ SG

tta angl nclgsed^

huhweun ndmuls^ to^ te^ Suifaces^

ar A (^) anG C

mus he 6.^ The^ agl^ e^

inioluc ACT^ atC^ s^ thesufi^ átE)

CT and^ DL^ akL^ nmals^ b»^

ta ss jace^ O?,^ Huktu^

CTUo

SL a^ þosal. AS^ ACL^

Cuts te^ baiall^ Jws^

C nd^ DL,

we mus hore LACI =^ LCLD^

= (^) (te)

dn hiytanghud tiiaunglu MM NL= (^) L CCh4E)=^

2t (^) s (L+E) 1 Cqahisn irtl

A = 2ut (atP)

AS

wnn traiv alog^ AB^ S^

He thcttcl^

wawe (^) thai

n a^ olevuse^

1udiwn,-Hedo tur^

ccss a^ pasu

Th ch þut^

dflite hutiseen^

Ha intlRing

wTw AA^ Und^ De^ pyen^ by.

A 2Mt^ (tS)^ -

Conai ion&^ j6^ intsfien^

) PaCanstiuchie^ intupunci-

2 M Ces^ (S+E)^ -%^

= (^) 2)l 2pt C6) =l2n+)) in:l 6)

NtondRins

wita blaulc-(out Lttit its ccux uta s (^) blattd oi a (^) plaui glass

pl&, ur aii tibn et 92ackualy

ncing tuickuss » tdmuol at ta tut Ta tHucknuss of t tiln ar uao the Feuu

c Contac s aio. munschhemahne. igw isalleawtel to {a ne)mall , and th n is td ti dhctud ig, alEa cGE and^ bGhh sinys Conctiic^ aicinol^ He^ poiur^ ot^ (eic

h eC^ ta^ lens^ d^ 9lass^ hlat^

ah Rr. Cinte^ Hho^ plonom-

Us dkatd (^) y Nat1Hoa^ is^ hy^ he^ siogs

r as Mtuwtoi's Siuys.

Sauic o^ pc

hitnuhe ig^ co^ th^

ecuus tha

ais tin

. (^) glas pht B^ hhch^ a^ bast^ of^

-ka inttoleut^ Azhh

tetwrakds i^ ibn enclostol^ y^ -he^

uns (^) Ly and e blane

glass plak^

G. (^) Te (^) ibkekrel ol ut a^ 29LuchoCo^ bu^

1ttsLun tas^ pioce^

and doik

Qunc r^

ilculoi (^) igus ae^ ptduced^

Ttis is^ dua^ t^ te

itiitemt lnetueu^ He^ iighk^

katkcted nt^ loue

Aafa c?^ t^

luns and^ ta uhel susfaca^ of^ tHsglas^

plat

cu 0771 -H^

cy

is

G

Suppose th^ haduus^ c^ (wsatuie^ c^

luuS Ris^ R^ Oud

T Cs^ n^ is^ o#ickuls^ ar^

a ousance ,o

oudotac.

Rhctd

u_b:Hanbmittud liah

2.ut (^) CosE (^) (2/L)A (^) 1,1,3%

2E= (214) AA

2 t Co=

ePxHe OE(2R OE)

u EP- HE =

, Of^ e =^ b^ , (^) anol (^) 2.-t 1

2R Subuting (^) H (^) alw (^) ol in euotUm (^) » (^) aund f iglr hing

Rta

D (^) 2-))AR

Ad2N Vuus (^) cuanutiis ci tha^ bgl (^) Sugs ale påepsshteval

Simidosly (^) 4à dusk (^) Ain

  1. 2 n 2 nAR

4naR

L (^) diamuts (^) of dok Ringk a (^) phepotibral

Squah cotu o natual numbelk

-Dtp -D

nt ,a Co b (olculattol

H.* Shou (^) thak h fkmaktoM^ ntRLLAu^ g^ is altsdann t he laus of tondeNaten on

62 Ahloie^ Git^

4he (^) Huory of inteitin^ dua^ to^ thro

Cohorau baulus^ and^ duobut^ h^

erpieBAion

wH

  1. eplaim^

the lmahon o^ ntuint^ o^

inges by

eons o^ hanl^

iplism ubg^

momochAoahe Lousc

Lig, Mow^ wavelongh^

is iouhrd^ by ipiilm

icus (^) the cr^ o^

inhoducng a^ thin^ pdak^

m

pah of^ oni^ o^ i^

intjaing laeams.^

Deoluc (^) aM

sCS H^ Ronenena^ ottn^

jekcinuslightdue^ to

t rs^ and^ ind^ th^

Condituonk manima^ ond

mnima.^ Shms^ tat^ tettissAunw^

patton of^ hsttao

and bausmtttrd^ izsa^ Connplutmutay

sws th^ matbm^ ointiit^

ingu in^ a^ thin

weda kaprd^ m^ fhd^

e enbidin (^) un widh

wfat (^) ah Hwton'&Rings^ basclae-ph^ aund^

asplotn

th (^) omaftm o Huwtans^ kgs^

n (^) aa?hcted amnd

ansmtteed (^) Jzhr. why thei^ Punzs^ al^

ciiculal

Action

un ooqu^ hsrod^ (^ abrttiu)^ he^ laud^ butwun^ a^ rle^ c

S ondl^ ehitn,^ o^ picitly^

olistinc hadcao^ (^ an^ iluminato

y) ib^ cbtoind^ n^ the^ /cAn.^

Ths ha thal^ lizhr tnovA^ atpa

motl i^ ogr^ Jw,^ t^ hire^ t^

obtacl (^) o aperotul )al

119 G^ d:poitu^ Ahoight^ Lin^

phobagatin, and^ H^ lgh

Ta ourol^ }1od^ ond^ Thus^ hardiug^ e^ liyhs^

v olld difocton

a inusity é^ oiJtibui^ a^ ATaun^ wTy^ olupunolung^

upon h

oJuk t^ ob&taclu.^ iacHon^

hancmNa ak^ diolol^ uto^ turo

biunls ahoackon b)^ hauunhafts^

oliiacte.

a u's odiRachion n tha^ ulnelb^ class^ of^

diloctim, the^ ouia^ of^

Agis

( Aon om^ whch^

diioctton pattern^

ib obbRvd,^

wbualy brt

aa o^ And distanus^ om^

ttu odsacttm^

cbbtacle ol^ apelalale.^

n

his Ca No^ Auns^ ahr^

brd and^ t^ inuiclt^

waw r^ b^

euhex

7,tAcal oylindhutal

auwhokns dilachion

n t^ Pounhoh^

closs o oliactiom,^

thr boulca^ a^ ghs

Cro ti^ BOLr^ ail^

ejchely at^ intndt^

ol4tancelhom Ha^ olilatry

cbstocu oi^ apatuii.^

Tis"is acluened^ by^

blacng ta^ bait^

and

cict te^ thu^ AcCa^

blanus of^ two^

nsis. In^ tis^ Case^ thi^

2nciokent

twTem blon

achm at^ a^

singe slt:

A

ai (^) m (^) tas an (^) inttyial 2nut (^) 1,2, TAe

Cxcpl xe0. Phd

nesw m

csiu tm

Tus (^) ri dinehns (^) of tu (^) , sCgnd, (^) titd, miwima (^) b putling m: (^) 1,2,3,

To finol tte odiiuctis omoximun, ltns olcehtntiali eta

tOt' and (^) 9uatu o (^) zioi,

CosA-Sma

Cos- Siut -^ O

an Ths (^) equato is olma (^) haphicaly by þlottug t^ culu

Y ano^ y=^ pn

TR isr tHue isa siaig lint

thioug digin^ mkun^ an^ anglu^ q4s

okil H^ Seconol^ is^ a^

olisContinuous

Cae anhg a^ Numhi^ of^

hhanches,

T points of intuiÁctimA the twr

ies the^ 2alues^ ofa^ Satiatuing^

aboe

guaticn. Thu Iaduk^ afL^ apphexiumalaly

Subbttutig t^ oublphophiot^ zalus^ o equotimo), u quH^ intousitas^ avAls^ mos^ iA^

Tus

tta intonsiy Coal^ maaima^ is

ASO)-A

Simlay, th irtunsity A maxima is

I,A 2

Tus te intonkltis ot ButcaAS Max ima alu u ho. otio

4 2ST^4972

2

Anit phal d tnbetuseon tom

llus (^) tu (^) dipachm (^) patten Conhi. Ha hyghl^ panr^ ipal^ mojin olnchion (^) o thu (^) tineirlent Aiyh, (^) hawing (^) alt. (^) nahly minino o (^) wtak (^) moxima (^) hopely T duabiny^ intenite^ on^ itH^1 minima (^) liu (^) al (^) = ri,1 21

-1,11 2 2T

Dactiomala (^) dounle (^) slith

Ast a wiallul beam o menocsomahic lit o wnelunh i he tneielen (^) ngmally upm tu (^) takulld (^) lib A and (^) cb, each (^) of widh eeobalid by ohqu {au o4 wich ol T clistnce beturen cAHending pouini te te BA ib le rel), Ey Heygens þhinial ere petn ta ib AG and cD unds out bitendowaelts all oliscts. fhom tta thaciy cf olia ctton afa ingl M, H hebultant amblttude aa diiuetion ibASA, uteaA a Cotant and d = TeSu Ca (^) Cnsielis H (^) tuo Mib as (^) oqualuto

two Cohehont

Sonuh cs plaud at He miolole þotnt S and S q He M, and

eac (^) sending a (^) tcrnue (^) lut e (^) amplitudu ALi a (^) oliiacton & Lcnseqtuntly, the hebeultan anplitude ara oinh f on the Aetn ll hi^ t (^) hisulta (^) ointtelund butweon (^) tO (^) WUl (^) Lom

QumpAttode ASu, and hauing a hale d nc &

Lel us (^) elicp Sk (^) þe«pinelicdal. to (^) Sur TRe (^) pot olifhiuta

= Sk = CErc)siO

ae. hansmisim Gkatiao intAbn

lh (^) ultunt (^) inteily (^) atto'r haen n^ ae

-). N 2T 3T

MMMNU 2 1T

-2I 3IT

Absent Odess: fo Cchto alu d, cestau intuAn maxima bLome abint (^) m tte (^) fattokn. (^) Suppese (^) si ant inlu (^) of 0, the Cenditions Acloin cÅ (^) Aimultentwy (^) fetafied al etol)Si^ =^ t^ n^ (inttne^ moaima) Qnol Si (^) tmA (oliacttm minima) ACtcoling to^ te^ ist (^) Crolition Hus (^) Mnmld ba an (^) ntA

moxima iu te

the s oliiictne,buracAAng^ Hhe^ Lecond^ cndition r (^) oliiactad (^) aht His olouchon maxima (^) wl ba (^) ainF u Tesiia^ the^ intin

this Conndtticn.

h (^) abae too (^) equatios , (^) we

m o e, Han 2m =2,4, (^) 6,. Sna m= (^13) -)

the 2r, yt 6th od it

Sancr maxima^ wil u^ albbent,

y wll Coinidi wit , 2nd, 3Aod, -- - cidak caif.ctiM muuma T Cehal^ diacton maxima wil hawe (^) ine thAne (^) intu n

, fun atial oliactiom maxima uil ha ir iniitiunte

TA s cl inAtahes tti nwmhu itilfe ne mAaima tuithumexma the

CCn hal diac ticm mapima inciakts

ane ansmiskiom (^) Giating (N-ikolilaction)

Sel A clactiom (^) giatung is (^) cun iangiment (^) uvaltnt to a lasy

Unhus (^) hatalll Mis (^) oi (^) cqunl wiclHs (^) and (^) Sniatid m ou^ t

qua (^) iclhs (^) and sttniatid (^) m (^) n net

hy (^) qua (^) chaqut rtes t (^) s (^) macdt uup (^) hy (^) ulng a kaiga numpti (^) }

m E7ual chaqut int (^) Cqudisaunt Qnc aialt lnts (^) o Cn chticalty (^) - plane (^) glas pla

it (^) aliammed hetn. (^) Te (^) hulugs cattee tta (^) liz (^) Ond ak (^) e

chu (^) thil ta tunlutl (^) Ut Hiansmit (^) ligh (^) ncd act (^) as K A^ he (^) th (^) chon (^) cf aa i blanc (^) +ianlmiwim MB (^) hiung (^) ipenclicuta. to atng, tu (^) lunth te (^) plane (^) ef (^) t (^) tabu. hte De h

AL Mialllhean ci mnocdhtomathie ghonvelury

intiolen nimally m oiating. y Huynb piiniple, al the t eack^ ir (^) bind (^) autsecamdaiy wauleb (^) allolUuchons Pte (^) hedy of (^) clilhachm at a (^) gle (^) , He (^) tUnvtkl (^) io all (^) petn tir a (^) diichone ah equivalut e o^ Sngke wu Cmlitude (^) ASuA (^) , (^) ufu = eSue Thus yHbe t tetal numati Mis in the qAatvj, tha olacticl (^) fays (^) on all^ Ha^ M3 ahi (^) équdaliat te (^) N-paralil Al (^) SK b hays t (^) 2ei (^) hendiculal to (^) SK. Thun (^) t (^) pau (^) oliltnte SK = (ero) Sine The (^) phasa olfhicote is

Cerd) Si =2P Hent (^) H (^) hisulant amituuol m^ tt (^) dikhM8 is R-AS S P T rultant intunsity is T = R Asn Stu

Fohmatin (^) omulkipl (^) aha (^) by (^) hatng:

wlia (^) ahta o (^) lght (^) of (^) wnelu (^) ngtl x (^) all hatin, ft^ Vtu maximn nmaldy^ on^ a nt (^) Jimcd (^) in tht (^) olikectins rtn (^) by

2 ru (^) ul tta^ JaveAtngtih., The (^) Aongel -Au tAtlntn, the^ hua. 1 e (^) Aut (^) diadim. (^) Hcnceil tH (^) inciolot (^) ight ht dit, thtn Ac elei^ toill (^) Con ta in (^) bintitml marima (^) c (^) ditaent tss uradtnF diiiaf olihuctmA.^ TL (^) inipal maxima (^) ef atl (^) waxdugtfhs CohomAug n^ n=l^ wll^ fém H (^) ssd (^) Sxcha and (^) o (^) m. Th (^) ncind mawina (^) l wnnlungths (^) cAe Apdung rono tuM be (^) along -H hame (^) di (^) Leton 0 -0. (^) Hernte te ze.o- (^) ddek maxima (^) uill (^) h ttit.

Robotying bwe cf an gptta insthumn The tkelwny Feux' tan eptical instRument fehMsnt ablity of Moluce olistintly sepaBotu Spicthal lins f lir

hawwng two^ o^ me^ clost^ uamlengts

Kayluiyhs (aitriion Rsolutorn; Krel Royle it hohesid He following caitr ion fa hcslutem wlici as heen unitAatly aolotttl

Tr Spectal lincs equ inttnkttid aie iuu}asat v«d by

n ottical tRumont utsn tu incial maxima o t

oliacticn attcin oluu to e lls cn H fish minimum

tthe acticm hatti in c t otlei

n 4ig i Mocn the inttnsity Calvel e tioo tttink Suu tat^ ta^ inci^ pal^ maximum^ m^ Coincielil^ uwt^

the

Lminimwn th oflhes., Tke y

U Me^ the^ Combined^ effct^ tha^ two

(ohic is^ Amm^ by^ tte^ fekultarnt^ dotted

Cuhn. This CuSve hoiUS a alistinch db tt miodolk, t'ndi^ catng^ He^ hent tido oleicrt Apectial Ainu.^ Tha inus a Aaid to ht i he&olvd

.Cut cptical^ intumn^ hcetl^

tur (^) pe (al^ Ainck^ ct tnweleng

A (^) undatcl then Hdx^ tnken^ a^ a^

mioukc. (^) eH 3.oleing tov

uldng Paurh oGhotihg TAieing pal^ o^ fatn9^ fbelont^

its (^) nldity t tn

a hatat^ spacthal^ dtntd^

uwnk (^) ngths uly clse trguHe.^ JF^ is^ meauskee

y Nn,^ hilL^ ols^

is He^ Amalus uavekorgth^ duft0nce^ tlhal^ Can^ b

us Atseld^ at^ uavelingth^

a.

a aallul hiam lih

tiud unnlangths^ and+d)^ be

intienAÅmallya he hahng.

7 nth mosma c +d andfimna b nh maimacia

ti (^) th dihuchm^ (en^ , ut^ fawe

A t^ #^ muuima^ adya^ Cent^

to tte^ nh^ maxima^ ctaind

les oisuchbn^ (En +olEn).^ Te^ atug^ equaton^ iå^

muma s

Ne+d ) O^ m

ckahy, the^

minima adjntnt to^ the^ nt^ piinc^ pal

moximum in^ tte^ oliisetoM^ o^ incaaakhg^

uill be^ obtantd^40

m nN +), TALjoL,^ i^ his^ mintmum^

is ebtnintd^ i^

the

diLiOn (^) (En tolen),^ ue^ Aae

Ned) Su(en +olen)^ =^ H^ 12A

+o)Sin (Ea +olEn) = LH

faylegls CaitruM,^ the^ unvelugfhs^

and (rolt)^ aii^ w

esolnd (^) by the^ 9ang^ uton^ ta^

Nt manma^ ot (atol) isalsc

Cbtauntd in t diictin OntolEn. Thsn ue ha

(Cod)SiOn^ +ol®n)^ =

n (^) (a+ola)

Tus (^) n(a od)

bu is^ t^ hiseluig^ þova^

R (^) e the (^) atung.Tteiohe

s (^) Ausrlving þavL dfating^ is^ egal^ #a^ hccuuet^ ol^

#e tstnl

ubi ulings^ n^ He^ fatirg^

and tHe^ colls. dte pucthun. R

Cau alar^ b^ clýiitdas^ R HE+oSu