













Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Engineering physics unit 3 of wave optics
Typology: Lecture notes
1 / 21
This page cannot be seen from the preview
Don't miss anything!
Al Hdistaste ts, s stc bo ta fiuya is ,it trcl
o Kntwig^ L,^ t^ odistate^ Hscus^
72Ugts ptel,^ D,ol,^ auolA^
ta ttwekiess (^) of the^ thanspahtn
blat Can b CalcwNotao
Jteiolenu m thiw f)rdi
twtom and^ Hozrke^
T susgaLL^ oG^
thin thasbasu^
s
tunuial ut^ +the^ bauttl^
lolouii hecuciol^ bya^ th
int ef^ ol^ om^
th (^) ifacr of wdt^
ano also^ by the
t n^ ef^ eab^
bublalu. Heke^ chiindl^
ok (^) Suc
Colais Huin^ fiuns^ ot^
mica (^) al Smias^
was (^) placed n^ a^ hlane^ gloss-
blt
intiitstnee hhutn^ lig^
suftetad f2m^
tHa (^) tbb ao
ta botto1^ Susfaa^ ot^
tn (^) n. 4h^ kas^ heCn^ chseivecd
Hha iniAsLne tt^
Caa (^) o tan ns^
takus platt
ucted kizh^ cund^ (20)^
Hansmittod (^) Lig
Intlhn dus^ to^
hauebd AizE
Cena'ols a tianspaunl
plm thuckust^
and
ns þastly ufcttd
aleg AT^ and^ þastly fautcd aloy^ A^ P.
Cu
2t G Conoluticn otMaoima
At (^) P>trird (^) i5 s (^) etlectia alo Cuu (^) jvully (^) uuigus
AT (^) Cul (^) C6 (^) Cas (^) Calculuc. (^) D cN (^) USnmal ~t AT (^) G AM (^) L (^) al to (^) b, TLCugu c (^) ieiolkte isi d th C (^) acho1 is^.^ ALS hrrcl (^) cb (^) uet (^) AE peds cP. Hi LAPC
opbical (^) puth (^) oitnt = (^) aH AbC (^) iw iUn - þat AM
(ASCASt^ )^ -^ AM
CM
AN nCM
AB T-CM)^
= (^) *(PC-CM) In tta APM) C PM AP PM AP^ CAS^ =^ CAE+EP) (AA 2t Cos Ae-P-2)
-PM
Thi equution i), m t Cal ohhctud igk dets no
pebu t Cosu peu cufiute bu oly t appauu
Thcy ttar, uken Ai_ur is hfhctid 2onHa Ssfau c Cul epttally ceLSeS mdliwrl (ais midum intiltAL) a pha
changeT equivalunt a pat c c Acs
Costuch bitia tokus plocu anci thm u apbas
2AtC.=/lA
2At C =
n
Cae (^) c +ansmittd^ gl^
ttniiir ugs
Chtainol (^) a (^) a ohstuh^ hcau^
ttu (^) c iu cu
ntokente a^ wuwge-shabed^ um
Co siolu a^ welgL - SLapud
ecloseol (^) by hut (^) hlat
welinc ala an_u &. TL tiec kJuss c th
y a cosallel ba
t ays^ fhctud^ a^
ta (^) uphti ot^ ad^ less^ Sutatus
Ha tiun^ jo^ ta^ equicistaw^ aites/na^
daik asu^ Bl
c ADand^ dê^ j^ bet^ iiginaihg^ iom^
t Sama^ incidsdSoy SA (^) T6 eyaluat H (^) baH otiltut^ buuean^ tie^ two^ hay t (^) pesbendtculaRi dK^ and^ N^ aA^ daun^ sm^ en^ AB Cnd At^ heshectively. Tu^ u oduit iue^ tei^ tut
= (AC+CD)u i^
= AC+CD)- AK
cm inbl 9aommitiy^ ito^ be^ ihown^
tar
ADK = 2 d LADN=
AMADStu^
AK AM
AK pAN
AN +^ MC+^ Cp)^ -^ AM
These uh a
Sc LCM^ LuMe^ t
Ond (^) CMis Cov, (^) ttehdor
DME ML^ =^ t Cd CD^ CL
A= NC^ +M^ CL^
= HCCL) = N
As (^) ta ara entls^
huhweun ndmuls^ to^ te^ Suifaces^
ar A (^) anG C
mus he 6.^ The^ agl^ e^
inioluc ACT^ atC^ s^ thesufi^ átE)
CT and^ DL^ akL^ nmals^ b»^
CTUo
we mus hore LACI =^ LCLD^
= (^) (te)
dn hiytanghud tiiaunglu MM NL= (^) L CCh4E)=^
2t (^) s (L+E) 1 Cqahisn irtl
AS
wnn traiv alog^ AB^ S^
wawe (^) thai
n a^ olevuse^
1udiwn,-Hedo tur^
Th ch þut^
dflite hutiseen^
Ha intlRing
wTw AA^ Und^ De^ pyen^ by.
A 2Mt^ (tS)^ -
Conai ion&^ j6^ intsfien^
2 M Ces^ (S+E)^ -%^
= (^) 2)l 2pt C6) =l2n+)) in:l 6)
NtondRins
wita blaulc-(out Lttit its ccux uta s (^) blattd oi a (^) plaui glass
ncing tuickuss » tdmuol at ta tut Ta tHucknuss of t tiln ar uao the Feuu
c Contac s aio. munschhemahne. igw isalleawtel to {a ne)mall , and th n is td ti dhctud ig, alEa cGE and^ bGhh sinys Conctiic^ aicinol^ He^ poiur^ ot^ (eic
h eC^ ta^ lens^ d^ 9lass^ hlat^
Us dkatd (^) y Nat1Hoa^ is^ hy^ he^ siogs
Sauic o^ pc
hitnuhe ig^ co^ th^
ecuus tha
ais tin
. (^) glas pht B^ hhch^ a^ bast^ of^
-ka inttoleut^ Azhh
tetwrakds i^ ibn enclostol^ y^ -he^
uns (^) Ly and e blane
glass plak^
G. (^) Te (^) ibkekrel ol ut a^ 29LuchoCo^ bu^
and doik
Qunc r^
ilculoi (^) igus ae^ ptduced^
Ttis is^ dua^ t^ te
itiitemt lnetueu^ He^ iighk^
katkcted nt^ loue
Aafa c?^ t^
luns and^ ta uhel susfaca^ of^ tHsglas^
plat
cu 0771 -H^
cy
is
Suppose th^ haduus^ c^ (wsatuie^ c^
luuS Ris^ R^ Oud
T Cs^ n^ is^ o#ickuls^ ar^
a ousance ,o
oudotac.
u_b:Hanbmittud liah
2.ut (^) CosE (^) (2/L)A (^) 1,1,3%
2E= (214) AA
ePxHe OE(2R OE)
, Of^ e =^ b^ , (^) anol (^) 2.-t 1
2R Subuting (^) H (^) alw (^) ol in euotUm (^) » (^) aund f iglr hing
Rta
D (^) 2-))AR
Ad2N Vuus (^) cuanutiis ci tha^ bgl (^) Sugs ale påepsshteval
Simidosly (^) 4à dusk (^) Ain
4naR
L (^) diamuts (^) of dok Ringk a (^) phepotibral
Squah cotu o natual numbelk
-Dtp -D
H.* Shou (^) thak h fkmaktoM^ ntRLLAu^ g^ is altsdann t he laus of tondeNaten on
62 Ahloie^ Git^
4he (^) Huory of inteitin^ dua^ to^ thro
Cohorau baulus^ and^ duobut^ h^
erpieBAion
wH
the lmahon o^ ntuint^ o^
inges by
eons o^ hanl^
iplism ubg^
momochAoahe Lousc
Lig, Mow^ wavelongh^
is iouhrd^ by ipiilm
icus (^) the cr^ o^
inhoducng a^ thin^ pdak^
m
pah of^ oni^ o^ i^
intjaing laeams.^
Deoluc (^) aM
sCS H^ Ronenena^ ottn^
jekcinuslightdue^ to
t rs^ and^ ind^ th^
Condituonk manima^ ond
mnima.^ Shms^ tat^ tettissAunw^
patton of^ hsttao
sws th^ matbm^ ointiit^
ingu in^ a^ thin
weda kaprd^ m^ fhd^
e enbidin (^) un widh
wfat (^) ah Hwton'&Rings^ basclae-ph^ aund^
asplotn
th (^) omaftm o Huwtans^ kgs^
n (^) aa?hcted amnd
ansmtteed (^) Jzhr. why thei^ Punzs^ al^
ciiculal
Action
S ondl^ ehitn,^ o^ picitly^
motl i^ ogr^ Jw,^ t^ hire^ t^
obtacl (^) o aperotul )al
119 G^ d:poitu^ Ahoight^ Lin^
phobagatin, and^ H^ lgh
Ta ourol^ }1od^ ond^ Thus^ hardiug^ e^ liyhs^
a u's odiRachion n tha^ ulnelb^ class^ of^
diloctim, the^ ouia^ of^
( Aon om^ whch^
diioctton pattern^
ib obbRvd,^
wbualy brt
aa o^ And distanus^ om^
ttu odsacttm^
cbbtacle ol^ apelalale.^
n
euhex
7,tAcal oylindhutal
n t^ Pounhoh^
thr boulca^ a^ ghs
Cro ti^ BOLr^ ail^
ejchely at^ intndt^
ol4tancelhom Ha^ olilatry
cbstocu oi^ apatuii.^
Tis"is acluened^ by^
blacng ta^ bait^
and
cict te^ thu^ AcCa^
2nciokent
twTem blon
achm at^ a^
singe slt:
A
ai (^) m (^) tas an (^) inttyial 2nut (^) 1,2, TAe
nesw m
Tus (^) ri dinehns (^) of tu (^) , sCgnd, (^) titd, miwima (^) b putling m: (^) 1,2,3,
tOt' and (^) 9uatu o (^) zioi,
CosA-Sma
an Ths (^) equato is olma (^) haphicaly by þlottug t^ culu
Y ano^ y=^ pn
okil H^ Seconol^ is^ a^
olisContinuous
hhanches,
aboe
Subbttutig t^ oublphophiot^ zalus^ o equotimo), u quH^ intousitas^ avAls^ mos^ iA^
Tus
ASO)-A
Tus te intonkltis ot ButcaAS Max ima alu u ho. otio
4 2ST^4972
2
Anit phal d tnbetuseon tom
llus (^) tu (^) dipachm (^) patten Conhi. Ha hyghl^ panr^ ipal^ mojin olnchion (^) o thu (^) tineirlent Aiyh, (^) hawing (^) alt. (^) nahly minino o (^) wtak (^) moxima (^) hopely T duabiny^ intenite^ on^ itH^1 minima (^) liu (^) al (^) = ri,1 21
-1,11 2 2T
Dactiomala (^) dounle (^) slith
Ast a wiallul beam o menocsomahic lit o wnelunh i he tneielen (^) ngmally upm tu (^) takulld (^) lib A and (^) cb, each (^) of widh eeobalid by ohqu {au o4 wich ol T clistnce beturen cAHending pouini te te BA ib le rel), Ey Heygens þhinial ere petn ta ib AG and cD unds out bitendowaelts all oliscts. fhom tta thaciy cf olia ctton afa ingl M, H hebultant amblttude aa diiuetion ibASA, uteaA a Cotant and d = TeSu Ca (^) Cnsielis H (^) tuo Mib as (^) oqualuto
eac (^) sending a (^) tcrnue (^) lut e (^) amplitudu ALi a (^) oliiacton & Lcnseqtuntly, the hebeultan anplitude ara oinh f on the Aetn ll hi^ t (^) hisulta (^) ointtelund butweon (^) tO (^) WUl (^) Lom
Lel us (^) elicp Sk (^) þe«pinelicdal. to (^) Sur TRe (^) pot olifhiuta
= Sk = CErc)siO
ae. hansmisim Gkatiao intAbn
lh (^) ultunt (^) inteily (^) atto'r haen n^ ae
-). N 2T 3T
-2I 3IT
Absent Odess: fo Cchto alu d, cestau intuAn maxima bLome abint (^) m tte (^) fattokn. (^) Suppese (^) si ant inlu (^) of 0, the Cenditions Acloin cÅ (^) Aimultentwy (^) fetafied al etol)Si^ =^ t^ n^ (inttne^ moaima) Qnol Si (^) tmA (oliacttm minima) ACtcoling to^ te^ ist (^) Crolition Hus (^) Mnmld ba an (^) ntA
the s oliiictne,buracAAng^ Hhe^ Lecond^ cndition r (^) oliiactad (^) aht His olouchon maxima (^) wl ba (^) ainF u Tesiia^ the^ intin
h (^) abae too (^) equatios , (^) we
m o e, Han 2m =2,4, (^) 6,. Sna m= (^13) -)
y wll Coinidi wit , 2nd, 3Aod, -- - cidak caif.ctiM muuma T Cehal^ diacton maxima wil hawe (^) ine thAne (^) intu n
ane ansmiskiom (^) Giating (N-ikolilaction)
Sel A clactiom (^) giatung is (^) cun iangiment (^) uvaltnt to a lasy
Unhus (^) hatalll Mis (^) oi (^) cqunl wiclHs (^) and (^) Sniatid m ou^ t
qua (^) iclhs (^) and sttniatid (^) m (^) n net
hy (^) qua (^) chaqut rtes t (^) s (^) macdt uup (^) hy (^) ulng a kaiga numpti (^) }
m E7ual chaqut int (^) Cqudisaunt Qnc aialt lnts (^) o Cn chticalty (^) - plane (^) glas pla
it (^) aliammed hetn. (^) Te (^) hulugs cattee tta (^) liz (^) Ond ak (^) e
chu (^) thil ta tunlutl (^) Ut Hiansmit (^) ligh (^) ncd act (^) as K A^ he (^) th (^) chon (^) cf aa i blanc (^) +ianlmiwim MB (^) hiung (^) ipenclicuta. to atng, tu (^) lunth te (^) plane (^) ef (^) t (^) tabu. hte De h
intiolen nimally m oiating. y Huynb piiniple, al the t eack^ ir (^) bind (^) autsecamdaiy wauleb (^) allolUuchons Pte (^) hedy of (^) clilhachm at a (^) gle (^) , He (^) tUnvtkl (^) io all (^) petn tir a (^) diichone ah equivalut e o^ Sngke wu Cmlitude (^) ASuA (^) , (^) ufu = eSue Thus yHbe t tetal numati Mis in the qAatvj, tha olacticl (^) fays (^) on all^ Ha^ M3 ahi (^) équdaliat te (^) N-paralil Al (^) SK b hays t (^) 2ei (^) hendiculal to (^) SK. Thun (^) t (^) pau (^) oliltnte SK = (ero) Sine The (^) phasa olfhicote is
Cerd) Si =2P Hent (^) H (^) hisulant amituuol m^ tt (^) dikhM8 is R-AS S P T rultant intunsity is T = R Asn Stu
Fohmatin (^) omulkipl (^) aha (^) by (^) hatng:
wlia (^) ahta o (^) lght (^) of (^) wnelu (^) ngtl x (^) all hatin, ft^ Vtu maximn nmaldy^ on^ a nt (^) Jimcd (^) in tht (^) olikectins rtn (^) by
2 ru (^) ul tta^ JaveAtngtih., The (^) Aongel -Au tAtlntn, the^ hua. 1 e (^) Aut (^) diadim. (^) Hcnceil tH (^) inciolot (^) ight ht dit, thtn Ac elei^ toill (^) Con ta in (^) bintitml marima (^) c (^) ditaent tss uradtnF diiiaf olihuctmA.^ TL (^) inipal maxima (^) ef atl (^) waxdugtfhs CohomAug n^ n=l^ wll^ fém H (^) ssd (^) Sxcha and (^) o (^) m. Th (^) ncind mawina (^) l wnnlungths (^) cAe Apdung rono tuM be (^) along -H hame (^) di (^) Leton 0 -0. (^) Hernte te ze.o- (^) ddek maxima (^) uill (^) h ttit.
Robotying bwe cf an gptta insthumn The tkelwny Feux' tan eptical instRument fehMsnt ablity of Moluce olistintly sepaBotu Spicthal lins f lir
Kayluiyhs (aitriion Rsolutorn; Krel Royle it hohesid He following caitr ion fa hcslutem wlici as heen unitAatly aolotttl
oliacticn attcin oluu to e lls cn H fish minimum
n 4ig i Mocn the inttnsity Calvel e tioo tttink Suu tat^ ta^ inci^ pal^ maximum^ m^ Coincielil^ uwt^
the
U Me^ the^ Combined^ effct^ tha^ two
Cuhn. This CuSve hoiUS a alistinch db tt miodolk, t'ndi^ catng^ He^ hent tido oleicrt Apectial Ainu.^ Tha inus a Aaid to ht i he&olvd
.Cut cptical^ intumn^ hcetl^
tur (^) pe (al^ Ainck^ ct tnweleng
A (^) undatcl then Hdx^ tnken^ a^ a^
mioukc. (^) eH 3.oleing tov
uldng Paurh oGhotihg TAieing pal^ o^ fatn9^ fbelont^
its (^) nldity t tn
a hatat^ spacthal^ dtntd^
uwnk (^) ngths uly clse trguHe.^ JF^ is^ meauskee
y Nn,^ hilL^ ols^
is He^ Amalus uavekorgth^ duft0nce^ tlhal^ Can^ b
us Atseld^ at^ uavelingth^
a.
intienAÅmallya he hahng.
7 nth mosma c +d andfimna b nh maimacia
ti (^) th dihuchm^ (en^ , ut^ fawe
to tte^ nh^ maxima^ ctaind
muma s
Ne+d ) O^ m
uill be^ obtantd^40
the
diLiOn (^) (En tolen),^ ue^ Aae
+o)Sin (Ea +olEn) = LH
faylegls CaitruM,^ the^ unvelugfhs^
and (rolt)^ aii^ w
esolnd (^) by the^ 9ang^ uton^ ta^
Cbtauntd in t diictin OntolEn. Thsn ue ha
(Cod)SiOn^ +ol®n)^ =
n (^) (a+ola)
Tus (^) n(a od)
bu is^ t^ hiseluig^ þova^
R (^) e the (^) atung.Tteiohe
s (^) Ausrlving þavL dfating^ is^ egal^ #a^ hccuuet^ ol^
#e tstnl
ubi ulings^ n^ He^ fatirg^
and tHe^ colls. dte pucthun. R
Cau alar^ b^ clýiitdas^ R HE+oSu