
































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Examples and explanations of how to use trigonometric substitution to solve integrals involving expressions such as a2 − x2, x2 + a2, and x2 − a2. several examples with detailed explanations and diagrams.
What you will learn
Typology: Lecture notes
1 / 40
This page cannot be seen from the preview
Don't miss anything!
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
To solve integrals containing the following expressions;
p a^2 − x^2
p x^2 + a^2
p x^2 − a^2 ,
it is sometimes useful to make the following substitutions:
q^ Expression^ Substitution^ Identity a^2 − x^2 x = a sin θ, − π 2 ≤ θ ≤ π 2 or θ = sin−^1 xa 1 − sin^2 θ = cos^2 θ p q^ a^2 +^ x^2 x^ =^ a^ tan^ θ,^ −^ π^2 ≤^ θ^ ≤^ π^2 or^ θ^ = tan−^1 xa^ 1 + tan^2 θ^ = sec^2 θ x^2 − a^2 x = a sec θ, 0 ≤ θ < π 2 or π ≤ θ < 32 π or θ = sec−^1 xa sec^2 θ − 1 = tan^2 θ
Note The calculations here are much easier if you use the substitution in
reverse: x = a sin θ as opposed to θ = sin
− 1 x a.
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a sin θ, −
π 2 ≤^ θ^ ≤^
π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =
p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example Z x
3 √ 4 − x^2
dx
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a sin θ, −
π 2 ≤^ θ^ ≤^
π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =
p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example Z x
3 √ 4 − x^2
dx
I (^) Let x = 2 sin θ, dx = 2 cos θdθ,
4 − x^2 =
p 4 − 4 sin
2 θ = 2 cos θ.
I
√x^3 dx 4 −x^2
R (^) 8 sin (^3) θ(2 cos θdθ)
2 cos θ =^
8 sin
3 θdθ =
8 sin
2 θ sin θ dθ =
(1 − cos
2 θ) sin θ dθ.
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a sin θ, −
π 2 ≤^ θ^ ≤^
π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =
p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example Z x
3 √ 4 − x^2
dx
I (^) Let x = 2 sin θ, dx = 2 cos θdθ,
4 − x^2 =
p 4 − 4 sin
2 θ = 2 cos θ.
I
√x^3 dx 4 −x^2
R (^) 8 sin (^3) θ(2 cos θdθ)
2 cos θ =^
8 sin
3 θdθ =
8 sin
2 θ sin θ dθ =
(1 − cos
2 θ) sin θ dθ.
I (^) Let w = cos θ, dw = − sin θ dθ,
(1−cos
2 θ) sin θ dθ = − 8
(1−w
2 ) dw = 8
(w
2 −1) dw =
8 w
3
− 8 w +C
8(cos θ)^3 3 −^ 8 cos^ θ^ +^ C^ =^
8(cos(sin−^1 x 2 ))^3 3 −^ 8 cos(sin
− 1 x 2 ) +^ C^.
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
x^3 √ 4 − x^2
dx =
8(cos(sin
− 1 x 2 ))
3
− 8 cos(sin
− 1 x 2
I (^) To get an expression for cos(sin−^1 x 2 ), we use an appropriate triangle
4 - x^2
θ
x
2
From the triangle, we get
cos(sin
− 1 x 2 ) =
4 −x^2 2
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
x^3 √ 4 − x^2
dx =
8(cos(sin
− 1 x 2 ))
3
− 8 cos(sin
− 1 x 2
I (^) To get an expression for cos(sin−^1 x 2 ), we use an appropriate triangle
4 - x^2
θ
x
2
From the triangle, we get
cos(sin
− 1 x 2 ) =
4 −x^2 2
I (^) hence
R (^) x (^3) dx √ 4 −x^2
8
4 −x^2 2
4 −x^2 2 +^ C^ =^
(4−x^2 )^3 /^2 3 −^4
4 − x^2 + C
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
Example
R (^) dx
x^2
9 −x^2
I (^) Let x = 3 sin θ, dx = 3 cos θdθ,
9 − x^2 =
p 9 − 9 sin^2 θ = 3 cos θ.
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
Example
R (^) dx
x^2
9 −x^2
I (^) Let x = 3 sin θ, dx = 3 cos θdθ,
9 − x^2 =
p 9 − 9 sin^2 θ = 3 cos θ.
I
R (^) dx
x^2
9 −x^2
R (^) 3 cos θdθ (9 sin^2 θ)3 cos θ =^
9 sin^2 θ dθ^ =^
− cot θ 9 +^ C^ =^
− cot(sin−^1 x 3 ) 9 +^ C
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
Example
R (^) dx
x^2
9 −x^2
I (^) Let x = 3 sin θ, dx = 3 cos θdθ,
9 − x^2 =
p 9 − 9 sin^2 θ = 3 cos θ.
I
R (^) dx
x^2
9 −x^2
R (^) 3 cos θdθ (9 sin^2 θ)3 cos θ =^
9 sin^2 θ dθ^ =^
− cot θ 9 +^ C^ =^
− cot(sin−^1 x 3 ) 9 +^ C
I (^) To get an expression for cot(sin−^1 x 3 ), we use an appropriate triangle
9 - x^2
θ
x
3
From the triangle, we get
cot(sin−^1 x 3 ) =
9 −x^2 x and hence
Z dx
x^2
9 − x^2
9 − x^2
9 x
I (^) Note You can also use this method to derive what you already know
Z 1 √ a^2 − x^2
dx = sin
− 1 x
a
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a tan θ, −
π 2 ≤^ θ^ ≤^
π 2 ,^ dx^ =^ a^ sec
2 θdθ, √ x^2 + a^2 =
a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example (^) Z dx √ x^2 + 4
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a tan θ, −
π 2 ≤^ θ^ ≤^
π 2 ,^ dx^ =^ a^ sec
2 θdθ, √ x^2 + a^2 =
a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example (^) Z dx √ x^2 + 4
I (^) Let x = 2 tan θ, − π 2 ≤^ θ^ ≤^
π 2 ,^ dx^ = 2 sec
(^2) θdθ, √ x^2 + 4 =
4 tan^2 θ + 4 = 2
sec^2 θ = 2 sec θ.
I
R (^) dx √ x^2 +
R (^) 2 sec (^2) θdθ 2 sec θ =^
sec θdθ = ln | sec θ + tan θ| + C =
ln | sec(tan
− (^1) x 2 ) + tan(tan
− (^1) x 2 )|^ +^ C^ = ln^ |^ sec(tan
− (^1) x 2 ) +^
x 2 |^ +^ C
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
We make the substitution x = a tan θ, −
π 2 ≤^ θ^ ≤^
π 2 ,^ dx^ =^ a^ sec
2 θdθ, √ x^2 + a^2 =
a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )
Example (^) Z dx √ x^2 + 4
I (^) Let x = 2 tan θ, − π 2 ≤^ θ^ ≤^
π 2 ,^ dx^ = 2 sec
(^2) θdθ, √ x^2 + 4 =
4 tan^2 θ + 4 = 2
sec^2 θ = 2 sec θ.
I
R (^) dx √ x^2 +
R (^) 2 sec (^2) θdθ 2 sec θ =^
sec θdθ = ln | sec θ + tan θ| + C =
ln | sec(tan
− (^1) x 2 ) + tan(tan
− (^1) x 2 )|^ +^ C^ = ln^ |^ sec(tan
− (^1) x 2 ) +^
x 2 |^ +^ C I (^) To get an expression for sec(tan−^1 x 2 ), we use an appropriate triangle
2
θ
x
x^2 + 4
From the triangle, we get
sec(tan
− 1 x 2 ) =
x^2 + 2 and hence
Z dx √ x^2 + 4
= ln |
x^2 + 4
2
x
2
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
Sometimes we can convert an integral to a form where trigonometric
substitution can be applied by completing the square.
Example Evaluate (^) Z dx √ x^2 − 4 x + 13
Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2
Sometimes we can convert an integral to a form where trigonometric
substitution can be applied by completing the square.
Example Evaluate (^) Z dx √ x^2 − 4 x + 13
I (^) x^2 − 4 x + 13 = x^2 − 2(2)x + 2^2 − 22 + 13 = (x − 2)^2 + 9.