Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trig Substitution: Solving a2 − x2, x2 + a2, and x2 − a2 with Identities, Lecture notes of Trigonometry

Examples and explanations of how to use trigonometric substitution to solve integrals involving expressions such as a2 − x2, x2 + a2, and x2 − a2. several examples with detailed explanations and diagrams.

What you will learn

  • How to evaluate the integral ∫√(x2−6x+8) dx using trigonometric substitution?
  • What is the trigonometric identity used to substitute x2 − a2?
  • How to find the integral of √(a2 − x2) dx using trigonometric substitution?
  • What is the trigonometric identity used to substitute x2 + a2?
  • How to use trigonometric substitution to solve integrals involving a2 − x2?

Typology: Lecture notes

2021/2022

Uploaded on 09/12/2022

aasif
aasif 🇺🇸

4.9

(7)

218 documents

1 / 40

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Trigonometric Substitution Integrals involving qa2x2Integrals involving px2+a2Integrals involving qx2a2
Trigonometric Substitution
To solve integrals containing the following expressions;
pa2x2px2+a2px2a2,
it is sometimes useful to make the following substitutions:
Expression Substitution Identity
qa2x2x=asin θ, π
2θπ
2or θ= sin1x
a1sin2θ= cos2θ
pa2+x2x=atan θ, π
2θπ
2or θ= tan1x
a1 + tan2θ= sec2θ
qx2a2x=asec θ, 0θ < π
2or πθ < 3π
2or θ= sec1x
asec2θ1 = tan2θ
Note The calculations here are much easier if you use the substitution in
reverse: x=asin θas opposed to θ= sin1x
a.
Annette Pilkington Trigonometric Substitution
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28

Partial preview of the text

Download Trig Substitution: Solving a2 − x2, x2 + a2, and x2 − a2 with Identities and more Lecture notes Trigonometry in PDF only on Docsity!

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Trigonometric Substitution

To solve integrals containing the following expressions;

p a^2 − x^2

p x^2 + a^2

p x^2 − a^2 ,

it is sometimes useful to make the following substitutions:

q^ Expression^ Substitution^ Identity a^2 − x^2 x = a sin θ, − π 2 ≤ θ ≤ π 2 or θ = sin−^1 xa 1 − sin^2 θ = cos^2 θ p q^ a^2 +^ x^2 x^ =^ a^ tan^ θ,^ −^ π^2 ≤^ θ^ ≤^ π^2 or^ θ^ = tan−^1 xa^ 1 + tan^2 θ^ = sec^2 θ x^2 − a^2 x = a sec θ, 0 ≤ θ < π 2 or π ≤ θ < 32 π or θ = sec−^1 xa sec^2 θ − 1 = tan^2 θ

Note The calculations here are much easier if you use the substitution in

reverse: x = a sin θ as opposed to θ = sin

− 1 x a.

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

We make the substitution x = a sin θ, −

π 2 ≤^ θ^ ≤^

π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =

p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example Z x

3 √ 4 − x^2

dx

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

We make the substitution x = a sin θ, −

π 2 ≤^ θ^ ≤^

π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =

p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example Z x

3 √ 4 − x^2

dx

I (^) Let x = 2 sin θ, dx = 2 cos θdθ,

4 − x^2 =

p 4 − 4 sin

2 θ = 2 cos θ.

I

R

√x^3 dx 4 −x^2

R (^) 8 sin (^3) θ(2 cos θdθ)

2 cos θ =^

R

8 sin

3 θdθ =

R

8 sin

2 θ sin θ dθ =

R

(1 − cos

2 θ) sin θ dθ.

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

We make the substitution x = a sin θ, −

π 2 ≤^ θ^ ≤^

π √^2 ,^ dx^ =^ a^ cos^ θdθ, a^2 − x^2 =

p a^2 − a^2 sin^2 θ = a| cos θ| = a cos θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example Z x

3 √ 4 − x^2

dx

I (^) Let x = 2 sin θ, dx = 2 cos θdθ,

4 − x^2 =

p 4 − 4 sin

2 θ = 2 cos θ.

I

R

√x^3 dx 4 −x^2

R (^) 8 sin (^3) θ(2 cos θdθ)

2 cos θ =^

R

8 sin

3 θdθ =

R

8 sin

2 θ sin θ dθ =

R

(1 − cos

2 θ) sin θ dθ.

I (^) Let w = cos θ, dw = − sin θ dθ,

Z

(1−cos

2 θ) sin θ dθ = − 8

Z

(1−w

2 ) dw = 8

Z

(w

2 −1) dw =

8 w

3

− 8 w +C

8(cos θ)^3 3 −^ 8 cos^ θ^ +^ C^ =^

8(cos(sin−^1 x 2 ))^3 3 −^ 8 cos(sin

− 1 x 2 ) +^ C^.

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

Z

x^3 √ 4 − x^2

dx =

8(cos(sin

− 1 x 2 ))

3

− 8 cos(sin

− 1 x 2

) + C.

I (^) To get an expression for cos(sin−^1 x 2 ), we use an appropriate triangle

4 - x^2

θ

x

2

From the triangle, we get

cos(sin

− 1 x 2 ) =

4 −x^2 2

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

Z

x^3 √ 4 − x^2

dx =

8(cos(sin

− 1 x 2 ))

3

− 8 cos(sin

− 1 x 2

) + C.

I (^) To get an expression for cos(sin−^1 x 2 ), we use an appropriate triangle

4 - x^2

θ

x

2

From the triangle, we get

cos(sin

− 1 x 2 ) =

4 −x^2 2

I (^) hence

R (^) x (^3) dx √ 4 −x^2

8

4 −x^2 2

3 −^8

4 −x^2 2 +^ C^ =^

(4−x^2 )^3 /^2 3 −^4

4 − x^2 + C

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

Example

R (^) dx

x^2

9 −x^2

I (^) Let x = 3 sin θ, dx = 3 cos θdθ,

9 − x^2 =

p 9 − 9 sin^2 θ = 3 cos θ.

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

Example

R (^) dx

x^2

9 −x^2

I (^) Let x = 3 sin θ, dx = 3 cos θdθ,

9 − x^2 =

p 9 − 9 sin^2 θ = 3 cos θ.

I

R (^) dx

x^2

9 −x^2

R (^) 3 cos θdθ (9 sin^2 θ)3 cos θ =^

R 1

9 sin^2 θ dθ^ =^

− cot θ 9 +^ C^ =^

− cot(sin−^1 x 3 ) 9 +^ C

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

a

− x

Example

R (^) dx

x^2

9 −x^2

I (^) Let x = 3 sin θ, dx = 3 cos θdθ,

9 − x^2 =

p 9 − 9 sin^2 θ = 3 cos θ.

I

R (^) dx

x^2

9 −x^2

R (^) 3 cos θdθ (9 sin^2 θ)3 cos θ =^

R 1

9 sin^2 θ dθ^ =^

− cot θ 9 +^ C^ =^

− cot(sin−^1 x 3 ) 9 +^ C

I (^) To get an expression for cot(sin−^1 x 3 ), we use an appropriate triangle

9 - x^2

θ

x

3

From the triangle, we get

cot(sin−^1 x 3 ) =

9 −x^2 x and hence

Z dx

x^2

9 − x^2

9 − x^2

9 x

+ C

I (^) Note You can also use this method to derive what you already know

Z 1 √ a^2 − x^2

dx = sin

− 1 x

a

+ C

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

x

+ a

We make the substitution x = a tan θ, −

π 2 ≤^ θ^ ≤^

π 2 ,^ dx^ =^ a^ sec

2 θdθ, √ x^2 + a^2 =

a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example (^) Z dx √ x^2 + 4

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

x

+ a

We make the substitution x = a tan θ, −

π 2 ≤^ θ^ ≤^

π 2 ,^ dx^ =^ a^ sec

2 θdθ, √ x^2 + a^2 =

a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example (^) Z dx √ x^2 + 4

I (^) Let x = 2 tan θ, − π 2 ≤^ θ^ ≤^

π 2 ,^ dx^ = 2 sec

(^2) θdθ, √ x^2 + 4 =

4 tan^2 θ + 4 = 2

sec^2 θ = 2 sec θ.

I

R (^) dx √ x^2 +

R (^) 2 sec (^2) θdθ 2 sec θ =^

R

sec θdθ = ln | sec θ + tan θ| + C =

ln | sec(tan

− (^1) x 2 ) + tan(tan

− (^1) x 2 )|^ +^ C^ = ln^ |^ sec(tan

− (^1) x 2 ) +^

x 2 |^ +^ C

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

x

+ a

We make the substitution x = a tan θ, −

π 2 ≤^ θ^ ≤^

π 2 ,^ dx^ =^ a^ sec

2 θdθ, √ x^2 + a^2 =

a^2 tan^2 θ + a^2 = a| sec θ| = a sec θ (since − π 2 ≤ θ ≤ π 2 by choice. )

Example (^) Z dx √ x^2 + 4

I (^) Let x = 2 tan θ, − π 2 ≤^ θ^ ≤^

π 2 ,^ dx^ = 2 sec

(^2) θdθ, √ x^2 + 4 =

4 tan^2 θ + 4 = 2

sec^2 θ = 2 sec θ.

I

R (^) dx √ x^2 +

R (^) 2 sec (^2) θdθ 2 sec θ =^

R

sec θdθ = ln | sec θ + tan θ| + C =

ln | sec(tan

− (^1) x 2 ) + tan(tan

− (^1) x 2 )|^ +^ C^ = ln^ |^ sec(tan

− (^1) x 2 ) +^

x 2 |^ +^ C I (^) To get an expression for sec(tan−^1 x 2 ), we use an appropriate triangle

2

θ

x

x^2 + 4

From the triangle, we get

sec(tan

− 1 x 2 ) =

x^2 + 2 and hence

Z dx √ x^2 + 4

= ln |

x^2 + 4

2

x

2

|+C.

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

x

+ a

, Completing the square.

Sometimes we can convert an integral to a form where trigonometric

substitution can be applied by completing the square.

Example Evaluate (^) Z dx √ x^2 − 4 x + 13

Trigonometric Substitution Integrals involving a^2 − x^2 Integrals involving x^2 + a^2 Integrals involving x^2 − a^2

Integrals involving

x

+ a

, Completing the square.

Sometimes we can convert an integral to a form where trigonometric

substitution can be applied by completing the square.

Example Evaluate (^) Z dx √ x^2 − 4 x + 13

I (^) x^2 − 4 x + 13 = x^2 − 2(2)x + 2^2 − 22 + 13 = (x − 2)^2 + 9.