Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Principles of Biomedical Imaging: Lecture 2 on X-Rays and Signal Processing, Exams of Bioengineering

A portion of lecture notes from a Bioengineering 280A course at UCSD, Fall 2008. The notes cover topics related to X-Rays, signal expansions, linearity, superposition, and convolution. The professor, TT Liu, discusses the Kronecker delta function, discrete signal expansion, and image decomposition. The document also includes information on Dirac delta functions, rectangle functions, and the representation of 1D and 2D functions.

What you will learn

  • How is a 2D signal decomposed into its components?
  • What is the difference between a 1D and 2D Dirac delta function?
  • How is the impulse response of a linear system used to characterize its behavior?
  • What is the difference between a shift invariant and non-shift invariant linear system?
  • What is the role of the Kronecker delta function in signal processing?

Typology: Exams

2021/2022

Uploaded on 09/27/2022

robinhood05
robinhood05 🇬🇧

4.8

(16)

229 documents

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
TT Liu, BE280A, UCSD Fall 20 08
Bioengineering 280A
Principles of Biomedical Imaging
Fall Quarter 2008
X-Rays Lecture 2
TT Liu, BE280A, UCSD Fall 20 08
Topics
Review of Signal Expansions
Linearity
Superposition
Convolution
TT Liu, BE280A, UCSD Fall 20 08
Kronecker Delta Function
!
"
[n] = 1 for n=0
0otherwise
#
$
%
n
δ[n]
n
δ[n-2]
0
0
TT Liu, BE280A, UCSD Fall 20 08
Kronecker Delta Function
!
"
[m,n] = 1 for m=0,n=0
0otherwise
#
$
%
δ[m,n] δ[m-2,n]
δ[m,n-2] δ[m-2,n-2]
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Principles of Biomedical Imaging: Lecture 2 on X-Rays and Signal Processing and more Exams Bioengineering in PDF only on Docsity!

TT Liu, BE280A, UCSD Fall 2008

Bioengineering 280A

Principles of Biomedical Imaging

Fall Quarter 2008

X-Rays Lecture 2

TT Liu, BE280A, UCSD Fall 2008

Topics

  • Review of Signal Expansions
  • Linearity
  • Superposition
  • Convolution

TT Liu, BE280A, UCSD Fall 2008

Kronecker Delta Function

"[ n ] =

1 for n = 0

0 otherwise

n

δ[n]

n

δ[n-2]

TT Liu, BE280A, UCSD Fall 2008

Kronecker Delta Function

"[ m , n ] =

1 for m = 0 , n = 0

0 otherwise

δ[m,n] δ[m-2,n]

δ[m,n-2] δ[m-2,n-2]

TT Liu, BE280A, UCSD Fall 2008

Discrete Signal Expansion

g [ n ] = g [ k ] "[ n # k ]

k =#$

$

%

g [ m , n ] =

l =#$

$

% g [ k , l ] "[ m # k , n # l ]

k =#$

$

%

n

δ[n]

n

1.5δ[n-2]

n

  • δ[n-1]

n

g[n]

n

TT Liu, BE280A, UCSD Fall 2008

2D Signal

a b

c d

0 0

0 d

=

a 0

0 0

0 b

0 0

0 0

c 0

TT Liu, BE280A, UCSD Fall 2008

Image Decomposition

g [ m , n ] = a "[ m , n ] + b "[ m , n # 1 ] + c "[ m # 1 , n ] + d "[ m # 1 , n # 1 ]

= g [ k , l ]

l = 0

1

$

k = 0

1

$ "[ m # k , n # l ]

c d

a b

0 0

0 1

=

c

d

a b

1 0

0 0

0 1

0 0

0 0

1 0

TT Liu, BE280A, UCSD Fall 2008

Dirac Delta Function

Notation :

"( x ) - 1D Dirac Delta Function

"( x , y ) or

2

"( x , y ) - 2D Dirac Delta Function

"( x , y , z ) or

3

"( x , y , z ) - 3D Dirac Delta Function

r

r ) - N Dimensional Dirac Delta Function

TT Liu, BE280A, UCSD Fall 2008

Representation of 1D Function

!

From the sifting property, we can write a 1D function as

g ( x ) = g ( ") #( x $ ") d ".

$%

%

& To gain intuition, consider the approximation

g ( x ) ' g ( n ( x )

1

( x

)

x $ n ( x

( x

,

.

/

n =$%

%

0 ( x.

g(x)

TT Liu, BE280A, UCSD Fall 2008

Representation of 2D Function

!

Similarly, we can write a 2D function as

g ( x , y ) = g ( ",#) $( x % ", y % #) d " d #. %&

&

' %&

&

'

To gain intuition, consider the approximation

g ( x , y ) ( g ( n ) x , m ) y )

1

) x

x % n ) x

) x

,

.

/

0

n =%&

&

1

1

) y

y % m ) y

) y

,

.

/

0 ) x ) y

m =%&

&

1 .

TT Liu, BE280A, UCSD Fall 2008

Intuition: the impulse response is the response of

a system to an input of infinitesimal width and

unit area.

Impulse Response

Since any input can be thought of as the

weighted sum of impulses, a linear system is

characterized by its impulse response(s).

Blurred Image

Original

Image

TT Liu, BE280A, UCSD Fall 2008

Bushberg et al 2001

TT Liu, BE280A, UCSD Fall 2008

Full Width Half Maximum

(FWHM) is a measure of resolution.

Prince and Link 2005

TT Liu, BE280A, UCSD Fall 2008

Impulse Response

!

The impulse response characterizes the response of a system over all space to a

Dirac delta impulse function at a certain location.

h ( x 2

; ") = L # x 1

[ ] 1D Impulse Response

h ( x 2

, y 2

; ",%) = L # x 1

$ ", y 1

$ % [ ( )] 2D Impulse Response

x 1

y 1

x 2

y 2

!

h ( x

2

, y

2

; ",#)

!

Impulse at ",#

TT Liu, BE280A, UCSD Fall 2008

Pinhole Magnification Example

η

η

a

b

b

a

In this example, an impulse at ",# ( ) will yield an impulse

at m ", m # ( ) where m = $ b / a.

Thus, h x 2

, y 2

( ) = L % x 1

$ ", y 1

[ ( )] = %( x 2

$ m ", y 2

$ m #).

y 1

y 2

TT Liu, BE280A, UCSD Fall 2008

Linearity (Addition)

I

1

(x,y)

R(I)

K

1

(x,y)

I

2

(x,y)

R(I)

K

2

(x,y)

I

1

(x,y)+ I 2

(x,y)

R(I)

K

1

(x,y) +K 2

(x,y)

TT Liu, BE280A, UCSD Fall 2008

Superposition Integral

What is the response to an arbitrary function g ( x 1

,y 1

Write g ( x 1

,y 1

) = g ( ",#) $( x 1

  • %

%

  • %

%

' ", y 1

' #) d " d #.

The response is given by

I ( x 2

, y 2

) = L g 1

( x 1

,y 1

[ ]

= L g ( ",#) $( x 1

  • %

%

  • %

%

' ", y 1

' #) d " d #

[ ]

= g ( ",#) L $( x 1

' ", y 1

[ ]

  • %

%

  • %

%

d " d #

= g ( ",#) h ( x 2

, y 2

  • %

%

  • %

%

d " d #

TT Liu, BE280A, UCSD Fall 2008

Pinhole Magnification Example

I ( x 2

, y 2

) = g ( ",#) h ( x 2

, y 2

  • $

$

  • $

$

d " d #

= C g ( ",#) &( x 2

' m ", y 2

' m #)

  • $

$

  • $

$

d " d #

I(x 2,

y 2

g(x 1,

y 1

TT Liu, BE280A, UCSD Fall 2008

Space Invariance

If a system is space invariant, the impulse response depends only

on the difference between the output coordinates and the position of

the impulse and is given by h ( x 2

, y 2

; ",#) = h x 2

$ ", y 2

( )

TT Liu, BE280A, UCSD Fall 2008

Pinhole Magnification Example

η

η

a

b

b

a

!

h x 2

, y 2

( ; ",#) = C $( x

2

% m ", y 2

% m #).

Is this system space invariant?

TT Liu, BE280A, UCSD Fall 2008

Pinhole Magnification Example

____, the pinhole system ____ space invariant.

TT Liu, BE280A, UCSD Fall 2008

Convolution

g [ m ] = g [0] "[ m ] + g [ 1 ] "[ m # 1 ] + g [2] "[ m # 2 ]

h [ m ', k ] = L [ "[ m # k ]] = h [ m $ # k ]

y [ m '] = L g [ m ] [ ]

= L g [0] "[ m ] + g [ 1 ] "[ m # 1 ] + g [2] "[ m # 2 ] [ ]

= L [ g [0] "[ m ]] + L [ g [ 1 ] "[ m # 1 ]] + L [ g [2] "[ m # 2 ]]

= g [0] L "[ m ] [ ]

  • g [ 1 ] L "[ m # 1 ] [ ]
  • g [2] L "[ m # 2 ] [ ]

= g [0] h [ m '# 0 ] + g [ 1 ] h [ m '# 1 ] + g [2] h [ m '# 2 ]

= g [ k ] h [ m '# k ]

k = 0

2

%

TT Liu, BE280A, UCSD Fall 2008

1D Convolution

I ( x ) = g ( ") h ( x ; ") d "

$

= g ( ") h ( x % ")

$

d "

= g ( x ) & h ( x )

Useful fact:

!

g ( x ) " #( x $ %) = g ( &) #( x $ % $ &)

  • '

'

( d &

= g ( x $ %)

TT Liu, BE280A, UCSD Fall 2008

2D Convolution

I ( x 2

, y 2

) = g ( ",#) h ( x 2

, y 2

  • $

$

%

  • $

$

%

d " d #

= g ( ",#) h ( x 2

& ", y 2

  • $

$

%

  • $

$

%

d " d #

= g ( x 2

, y 2

) ** h ( x 2

, y 2

For a space invariant linear system, the superposition

integral becomes a convolution integral.

where ** denotes 2D convolution. This will sometimes be

abbreviated as *, e.g. I (x 2

, y 2

)= g(x 2

, y 2

)*h(x 2

, y 2

TT Liu, BE280A, UCSD Fall 2008

Pinhole Magnification Example

!

I ( x 2

, y 2

) = s ( ",#) h ( x 2

, y 2

; ",#)

  • $

$

%

  • $

$

%

d " d #

= s ( ",#) &( x 2

' m ", y 2

' m #)

  • $

$

%

  • $

$

% d " d #

after substituting ( " = m " and (

= m #, we obtain

=

1

m

2

s ( "( / m , #( / m ) &( x 2

' "( , y 2

' #( )

  • $

$

%

  • $

$

% d " ( d #(

=

1

m

2

s ( x 2 / m , y 2 / m ) )) & x 2 , y 2

=

1

m

2

s ( x 2

/ m , y 2

/ m )

TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging

s(x)

d

z

m

s

x

m

t ( x ) = "( x )

TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging

s(x)

d

z

x 0

x 0

Mx 0

m

s

x " Mx 0

m

t ( x ) = "( x # x 0

!

M ( z ) =

d

z

; m ( z ) = "

d " z

z

TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging

s

x " Mx 0

m

= s

x

m

x

M

" x 0

= s ( x / m ) * t

x

M

!

I ( x , y ) = t

x

M

,

y

M

"

$

%

&

' ((

1

m

2

s

x

m

,

y

m

"

$

%

&

'

For off-center pinhole object, the shifted source image can be written as

For the general 2D case, we convolve the magnified object with the impulse response

Note: we have ignored obliquity factors etc.

TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging

d

z

m

s

x

m

( t

x

M

t ( x ) = rect ( x /10)

s ( x ) = rect ( x /10)

TT Liu, BE280A, UCSD Fall 2008

X-Ray Imaging

m

s

x

m

( t

x

M

= rect ( x / 10 ) ( rect ( x / 20 )

m = 1 ; M = 2

TT Liu, BE280A, UCSD Fall 2008

Summary

  1. The response to a linear system can be

characterized by a spatially varying impulse

response and the application of the superposition

integral.

  1. A shift invariant linear system can be

characterized by its impulse response and the

application of a convolution integral.