Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

taylor series cheat sheet, Cheat Sheet of Mathematics

cheat sheet for some taylor series

Typology: Cheat Sheet

2019/2020

Uploaded on 09/26/2021

inesixxxx
inesixxxx 🇬🇧

1

(1)

1 document

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Series de Taylor-Maclaurin
f(x) =
n=0
f(n)(0)
n!xn=f(0) + f0(0)x+f00(0)
2! x2+f000(0)
3! x3+···+f(n)(0)
n!xn+···
Función Desarrollo de Taylor-Maclaurin Válido para
1
1x
n=0
xn=1+x+x2+···+xn+··· x(1,1)
1
1+x
n=0
(1)nxn=1x+x2+···+ (1)nxn+··· x(1,1)
1
1+x
n=01/2
nxn=11
2x+1·3
2·4x21·3·5
2·4·6x3+···+ (1)n(2n1)!!
(2n)!! xn+··· x(1,1)
(1+x)α
n=0α
nxn=1+αx+α(α1)
2! x2+···+α(α1). . . (αn+1)
n!xn+··· x(1,1)
log(1+x)
n=1
(1)n+1
nxn=x1
2x2+1
3x31
4x4+···+(1)n+1
nxn+··· x(1,1]
ex
n=0
1
n!xn=1+x+1
2x2+1
3! x3+1
4! x4+···+1
n!xn+··· xR
senx
n=0
(1)n
(2n+1)!x2n+1=x1
3! x3+1
5! x51
7! x7+···+(1)n
(2n+1)!x2n+1+··· xR
cosx
n=0
(1)n
(2n)!x2n=11
2! x2+1
4! x41
6! x6+···+(1)n
(2n)!x2n+··· xR
tgx
n=0
tg(2n+1)(0)
(2n+1)!x2n+1=x+1
3x3+2
15 x5+17
315 x7+62
2835 x9+···+tg(2n+1)(0)
(2n+1)!x2n+1+··· x(
π
2,π
2)
arcsenx
n=0
(2n1)!!
(2n)!!(2n+1)x2n+1=x+1
6x3+3
40 x5+5
112 x7+···+(2n1)!!
(2n)!!(2n+1)x2n+1+··· x[1,1]
arctgx
n=0
(1)n
2n+1x2n+1=x1
3x3+1
5x51
7x7+···+(1)n
2n+1x2n+1+··· x[1,1]
Brook TAYLOR Colin M ACL AUR IN
1685 1731 1698 1746

Partial preview of the text

Download taylor series cheat sheet and more Cheat Sheet Mathematics in PDF only on Docsity!

Series de Taylor-Maclaurin

f (x) =

n= 0

f (n)( 0 ) n!

xn^ = f ( 0 ) + f ′( 0 )x +

f ′′( 0 ) 2!

x^2 +

f ′′′( 0 ) 3!

x^3 + · · · +

f (n)( 0 ) n!

xn^ + · · ·

Función Desarrollo de Taylor-Maclaurin Válido para

1 − x

n= 0

xn^ = 1 + x + x^2 + · · · + xn^ + · · · x ∈ (− 1 , 1 )

1 + x

n= 0

(− 1 )n^ xn^ = 1 − x + x^2 + · · · + (− 1 )nxn^ + · · · x ∈ (− 1 , 1 )

√^1

1 + x

n= 0

n

xn^ = 1 −

2 x^ +^

2 · 4 x

2 − 1 ·^3 ·^5

2 · 4 · 6 x

(^3) + · · · + (− 1 )n (^2 n^ −^1 )!! ( 2 n)!! x

n (^) + · · · x ∈ (− 1 , 1 )

( 1 + x)α^

n= 0

α n

xn^ = 1 + αx +

α(α − 1 ) 2!

x^2 + · · · +

α(α − 1 )... (α − n + 1 ) n!

xn^ + · · · x ∈ (− 1 , 1 )

log( 1 + x)

n= 1

(− 1 )n+^1 n

xn^ = x −

x^2 +

x^3 −

x^4 + · · · +

(− 1 )n+^1 n

xn^ + · · · x ∈ (− 1 , 1 ]

ex^

n= 0

n!

xn^ = 1 + x + 1 2

x^2 + 1 3!

x^3 + 1 4!

x^4 + · · · + 1 n!

xn^ + · · · x ∈ R

sen x

n= 0

(− 1 )n ( 2 n + 1 )! x

2 n+ (^1) = x − 1 3! x

5! x

7! x

(^7) + · · · + (−^1 )n ( 2 n + 1 )! x

2 n+ (^1) + · · · x ∈ R

cos x

n= 0

(− 1 )n ( 2 n)!

x^2 n^ = 1 −

x^2 +

x^4 −

x^6 + · · · +

(− 1 )n ( 2 n)!

x^2 n^ + · · · x ∈ R

tg x

n= 0

tg(^2 n+^1 )( 0 ) ( 2 n + 1 )!

x^2 n+^1 = x +

x^3 +

x^5 +

x^7 +

x^9 + · · · +

tg(^2 n+^1 )( 0 ) ( 2 n + 1 )!

x^2 n+^1 + · · · x ∈ (−

π 2

π 2

arc sen x

n= 0

( 2 n − 1 )!! ( 2 n)!!( 2 n + 1 )

x^2 n+^1 = x + 1 6

x^3 + 3 40

x^5 + 5 112

x^7 + · · · + (^2 n^ −^1 )!! ( 2 n)!!( 2 n + 1 )

x^2 n+^1 + · · · x ∈ [− 1 , 1 ]

arc tg x

n= 0

(− 1 )n 2 n + 1 x

2 n+ (^1) = x − 1 3 x

5 x

7 x

(^7) + · · · + (−^1 )n 2 n + 1 x

2 n+ (^1) + · · · x ∈ [− 1 , 1 ]

Brook TAYLOR Colin MACLAURIN 1685 – 1731 1698 – 1746