
Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
taller variable compleja
Typology: Exams
1 / 1
This page cannot be seen from the preview
Don't miss anything!
Variable Compleja, Taller 4 Programa de Matem´aticas, Universidad Sergio Arboleda
(a)
γ
z^2 + z(z^2 +4) dz, donde^ γ(t) =^ re
it, 0 ≤ t ≤ 2 π para todos los posibles valores de r, 0 < r < 2 y 2 < r < +∞. (b)
γ
z^1 /m (z−1)m^ dz, donde^ γ(t) = 1 + 1/^2 e
it, 0 ≤ t ≤ 2 π y m ∈ N.
(c)
∫ (^2) π 0 e
cos θ (^) cos(sen(θ))dθ = 2π. Indicaci´on: Escriba esta integral como parte de una integral compleja.
f ′(z) f (z) dz^ = 0 para toda curva diferenciable a trozos cerrada^ γ^ en Ω.
(a) Si f es entera y existen constantes M, R > 0 y un entero n ≥ 1 tal que |f (z)| ≤ M |z|n para todo |z| > R entonces f es un polinomio de grado a lo m´as n. (b) Si f es anal´ıtica y satisface |f (z)| ≤ A(1 + |z|)η, η ∈ R fijo, en Ω = {x + iy ∈ C|x ∈ R, − 1 < y < 1 } entonces para cada n ∈ N existe An ≥ 0 tal que |f (n)(x)| ≤ An(1 + |x|)η^ para todo x ∈ R.
(a) Si f es entera y Im(f (z)) ≥ 0 para todo z ∈ C entonces f es constante. (Indicaci´on: Considere eif^ (z)). (b) Si f es entera y Re(f (z)) ≤ M para todo z ∈ C entonces f es constante. (Indicaci´on: Considere ef^ (z)). (c) Si f es entera, f (0) = 0 y |f (z) − ez^ sen(z)| < 4 para todo z ∈ C entonces f (z) = ez^ sen(z).