
















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
static latches and registers hand written notes
Typology: Schemes and Mind Maps
1 / 24
This page cannot be seen from the preview
Don't miss anything!
and ZSC = 600 ∠-20° Ω. [EC6503-NOV/DEC 2019](2 Marks), [EC6503-
NOV/DEC 2016](2 Marks), [EC6503-APR/MAY 2019](2 Marks)
Solution:
Given: f= 1600 Hz, ZOC = 750∠-30° Ω, ZSC = 600∠-20° Ω
Z (^) O = 750 ∠− 30 × 600 ∠− 20
° Ω
Hz. ZSC = 3220 ∠-79.29° Ω, ZOC = 1301∠76.67° Ω. Determine the primary
constants of the line. [EC2305-NOV/DEC 2014](10 Marks)
Solution:
Given: l=25Km, f=796Km, ZSC = 3220∠-79.29° Ω, ZOC = 1301∠76.67° Ω
Z (^) o = 1301 ∠ 76. 67 × 3220 ∠− 79. 29
°
OC
SC
Z
tanh γ =
tanh γ ∠
e 1 tanh γ 2 γ
2 γ
= ∠ −
e 1
2 γ
2 γ
= −
e 1 ( 0. 3276 j 1. 5387 )(e 1 )
2 γ 2 γ − = − +
e 1 0. 3276 e 0. 3276 j 1. 5387 e j 1. 5387
2 γ 2 γ 2 γ − = × + − × −
2 γ − + = + −
2 γ
4
=
−
C = 98.8 nF/Km
Calculate reflection factor. [EC6503-APR/MAY 2017](2 Marks)
Solution:
Given: Zo = 745∠-12° Ω, ZR=100Ω
R O
Z Z
ReflectionFactor,k=
ReflectionFactor,k=
ReflectionFactor,k=
Reflection Factor = 0.6475 ∠ 4.
°
Calculate reflection loss in dB. [EC2305-APR/MAY 2011](2 Marks)
Solution:
Given: Zo = 745∠-12° Ω, ZR=100Ω
dB |k|
Reflection lossindB= 20 log
R O
Z Z
Reflection Factor,k=
Reflection Factor,k=
Reflection Factor,k=
Reflection Factor = 0.6475 ∠ 4.
°
dB
Reflection lossindB= 20 log
Reflection loss in dB = 3.7752 dB
terminated by a load impedance of (650-j475) Ω. Determine the reflection
coefficient. [EC2305-NOV/DEC 2013](2 Marks)
Solution:
Given: ZO = 400 Ω, ZR = (650-j475) Ω
1050 j 475
250 j 475
( 650 j 475 ) 400
( 650 j 475 ) 400
R O
R O
−
K = 0. 3675 −j 0. 2861 = 0. 4658 ∠− 37. 9
magnitude of reflection coefficient if the receiving end impedance is (650-j475)
Ω. [EC2305-NOV/DEC 2013](2 Marks)
Solution:
Given: ZO = 600 Ω, ZR = (650-j475) Ω
1250 j 475
50 j 475
( 650 j 475 ) 600
( 650 j 475 ) 600
R O
R O
−
K = 0. 1611 −j 0. 3188 = 0. 3571 ∠− 63. 18
terminated in a load impedance of (150-j150) Ω. Determine the reflection
coefficient. [EC2305-APR/MAY 2014](2 Marks)
Solution:
Given: ZO = 300 Ω, ZR = (150-j150) Ω
450 j 150
150 j 150
( 150 j 150 ) 300
( 150 j 150 ) 300
R O
R O
−
K =− 0. 2 −j 0. 4 = 0. 4472 ∠− 116. 57
load impedance of 60+j 40 ohm. [EC6503-NOV/DEC 2015](2 Marks),
[EC2305-NOV/DEC 2015](2 Marks)[EC2305-APR/MAY 2013](2 Marks)
Solution:
Given: ZO = 50 Ω, ZR = (60+j40) Ω
propagation constant is (0.0074+j0.0356) per Km. Determine the values of R
and L of this line if the frequency is 1000Hz.
[EC2305-APR/MAY 2014](6 Marks)
Solution:
Given: Zo = 683-j138Ω, γ=P= 0.0074+j0.0356, f=1000Hz
ω = 2πf = 2 x 3.14 x 1000 = 6280
R+jωL = ZoP = (683-j138) x ( 0.0074+j0.0356)
= 9.967+j23.
Comparing real and imaginary terms,
R = 9.967 ohms/Km
ωL = 23.
L=3.7092 mH/Km
C=0.0083 μF/Km and R=10.4 Ω/Km. Determine the characteristic impedance,
propagation constant, phase constant, velocity of propagation, sending end
current and receiving end current for a given frequency f=1000 Hz. sending
end voltage is 1V and transmission line length is 100Kms.
[EC6503-NOV/DEC 2016] (16 Marks) [EC6503-APR/MAY 2018](13 Marks)
Solution:
Given: Es = 1V, f=1000 Hz, l=100 Km, R=10.4 Ω/Km, L = 0.00367H/Km, G
=0.08x10-6^ mho/Km, C = 0.0083 μF/Km
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL
Z (^) o
Z = R+jωL = 10.4 + j(6280)(.00367) = 25.285∠65.71°
Y = G+jωC = 0.08x10-6^ +j(6280)(0.0083x10-6) = 5.212x10-5∠89.
°
o (^5) × ∠
−
3 o
∠ − ×
−
Zo = 696.46 ∠ -12.
° Ω
The propagation constant is given by,
P γ 25. 285 65. 71 5. 212 10 89. 91
5 = = ∠ × × ∠
−
P γ 1. 319 10 ( 65. 71 89. 91 )
3 = = × ∠ +
−
P=γ = α+jβ = 0.0363 ∠77.81° (Or) 7.6649x10-3+j0.
attenuation constant, α = 7.6649x10-3^ Np/Km
and phase constant, β = 0.0355 rad/Km
The velocity of propagation is given by,
β
ω v (^) p =
v
5 p = = ×
2 π
β
2 π λ = = =
NOTE: ZR value is not given in the question. so, assume the line is perfectly
matched line to proceed further. i.e., ZR=ZO, ZS=ZO
g S
g
g in
g S Z Z
3 S
−
IS = 1.4358x10-3^ ∠ 12.
°
We know that,
− ZYs
R o
ZYs R o
0
R R o e Z Z
e Z
At sending end, s=l, and put K=0, because ZR = ZO.
ZY l IS =IRe
ZY l IR ISe
( ) e e e e 203. 4
ZYl γl -7.6649 10 +j0.0355 100 0. 76649
= = = ∠
− − × × −
e 0. 4646 203. 4
ZYl = ∠
−
I 1. 4358 10 12. 1 0. 4646 203. 4
3 ∴ (^) R = × ∠ × ∠
−
IR = 6.671x10-4 ∠ -144.
° A
ohm is operating at ω = 10^6 rad / sec has attenuation constant of 0.921 Np/m
and phase shift constant of 0 rad /m. If the line is terminated by a load of
20+j50 ohm, determine the input impedance of this line.
[EC6503-NOV/DEC 2015](6 Marks), [EC6503-APR/MAY 2017](8 Marks),
[EC2305-NOV/DEC 2015](6 Marks), [EC2305-APR/MAY 2019](8 Marks)
Solution:
Given: l = 2m, ZO = 60+j 40Ω, ω = 10^6 rad/sec, α= 0.921 Np/m, β= 0 rad /m,
ZR = 20+j50 Ω
Reflection Coefficient, K
R O
R O
( 20 j 50 ) ( 60 j 40 ) K = − + = ∠
e e e βl e ( 0 )( 2 )
γl (α jβ)l αl ( 0. 921 )( 2 ) = = ∠ = ∠
γl 1. 842 e =e
e
γ l = 6.3091 ∠ 0 °
e e e βl e ( 0 )( 2 )
γl (α jβ)l αl ( 0. 921 )( 2 ) = = ∠− = ∠−
− − + − −
γl 1. 842 e e
e-
γ l = 0.1585 ∠ 0 °
−
−
γl γ l
γl γ l
s o e Ke
e Ke Z Z
Z (^) s 72. 11 33. 69
Z (^) s 72. 11 33. 69
Z (^) s 72. 11 33. 69
{ }
Z (^) s = 72. 11 ∠ 33. 69 0. 9920 ∠ 0. 8740
° Ω
terminated in ZO and having following parameters R = 10.4 ohm per Km, L =
0.00367 Henry per Km, G =
6
− × mho per Km, C = 0.00835 μF per Km.
Calculate Zo, α, β, λ, v. also find the received power.
[EC6503-MAY/JUN 2016](16 Marks), [EC6503-APR/MAY 2016](16 Marks),
[EC6503-APR/MAY 2015](16 Marks)
Solution:
Given: Eg = 1V, f=1000 Hz, l=100 Km, when ZR = ZO then ZS = ZO, R=10.
Ω/Km, L = 0.00367H/Km, G =0.8x10-6^ mho/Km, C = 0.00835 μF/Km
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL
Z (^) o
Z = R+jωL = 10.4 + j(6280)(.00367) = 25.285∠65.71°
Y = G+jωC = 0.8x10-6^ +j(6280)(0.00835x10-6) = 5.244x10-5∠89.
°
5 o × ∠
−
3 o
∠ − ×
−
Zo = 694.48 ∠ -11.
° Ω
The propagation constant is given by,
P γ 25. 285 65. 71 5. 244 10 89. 13
5 = = ∠ × × ∠
−
P γ 1. 326 10 ( 65. 71 89. 13 )
3 = = × ∠ +
−
P=γ = α+jβ = 0.0364 ∠77.42° (Or) 7.928x10-3+j0.
attenuation constant, α = 7.928x10-3^ Np/Km
and phase constant, β = 0.0355 rad/Km
The velocity of propagation is given by,
β
ω v (^) p =
v
5 p = = ×
2 π
β
2 π λ = = =
terminated in ZO and having following parameters: Series resistance R = 10.
ohm/ mile, Series inductance L = 0.00367 H/mile, Shunt conductance G = 0.
x 10-6^ mho/ mile, and capacitance between conductors C = 0.00835 μF/mile.
Find the characteristic impedance, Propagation constant, attenuation
constant, phase shift constant, velocity of propagation and wavelength.
[EC6503-APR/MAY 2017](6 Marks)
Solution:
Given: Eg = 1V, f=1000 cycles = 1000 Hz, l=100 mile, when ZR = ZO then ZS =
ZO, R=10.4 Ω/ mile, L = 0.00367H/ mile, G =0.8x10-6^ mho/ mile, C = 0.
μF/ mile
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL
Z (^) o
Z = R+jωL = 10.4 + j(6280)(0.00367) = 25.285∠65.71°
Y = G+jωC = 0.8x10-6^ +j(6280)(0.00835x10-6) = 5.244x10-5∠89.
°
o (^5) × ∠
−
o (^3)
∠ − ×
−
Zo = 694.48 ∠ -11.
° Ω
The propagation constant is given by,
P γ 25. 285 65. 71 5. 244 10 89. 13
5 = = ∠ × × ∠
−
P γ 1. 326 10 ( 65. 71 89. 13 )
3 = = × ∠ +
−
P=γ = α+jβ = 0.0364 ∠77.42° (Or) 7.928x10-3+j0.
attenuation constant, α = 7.928x10-3^ Np/Km
and phase constant, β = 0.0355 rad/Km
The velocity of propagation is given by,
β
ω v (^) p =
v
5 p = = ×
2 π
β
2 π λ = = =
terminated in 200 Ω resistance. The line parameters are R = 10 Ω/Km, L =
3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km. Calculate Zo, α, β, λ, v.
also find the received power. [EC2305-NOV/DEC 2018](16 Marks)
Solution:
Given: Eg = 1V, f=1000 Hz, l=100 Km, ZR =200 Ω, R=10 Ω/Km, L =
3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL
Z (^) o
Z = R+jωL = 10 + j(6280)(3.8x10-3) = 25.87∠67.26°
Y = G+jωC = 1x10-6^ +j(6280)(0.0085x10-6) = 5.339x10-5∠88.
°
Zo
∠
Zo
Zo = 696.06 ∠ -10.
° Ω
The propagation constant is given by,
P γ 25. 87 67. 26 5. 339 10 ∠
P γ 1. 3812 10
P=γ = α+jβ = 0.03716 ∠78.095° (Or) 7.6657x10-3+j0.
attenuation constant, α = 7.6657x10-3^ Np/Km
and phase constant, β = 0.03636 rad/Km
The velocity of propagation is given by,
β
ω v (^) p =
Km/ sec
v (^) p= = ×
2 π
β
2 π λ = = =
Reflection Coefficient, K
R O
R O
[ ]
ZYl ZYl
0
R R o S e Ke Z
− −
°
Ke
√ZYl = 0.5609∠173.
° x 2.1524 ∠208.
°
Ke
√ZYl = 1.2073∠21.
°
[ ]
1.5992x10 - 1.
( )[ ]
1.5992x10 - 1.
1.5992x10 - 1.548 IR 2. 1523 151. 70
IR = 7.43x10-4 ∠ 150.
°
ER = IR x ZR = 7.43x10-4∠150.
° x 200 = 0.1486∠150.
°
° V
PS = |ES|. |IS|.cos (ES^ IS)
PS = 1 x 1.5992 x 10-3^ x cos (-1.5477)
PS = 1.5986 x 10-3^ W
and PR = |ER|. |IR|.cos (ER^ IR)
PR = 0.1486 x 7.43x10-4^ cos(0)
PR = 0.1486 x 7.43x10-4^ W
PR = 1.1041x10-4^ W
terminated in 200 Ω resistance. The line parameters are R = 10 Ω/Km, L =
3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km. Calculate the
impedance, reflection coefficient, power and transmission efficiency.
[EC2305-APR/MAY 2011](16 Marks)
Solution:
Given: Eg = 1V, f=1000 Hz, l=100 Km, ZR =200 Ω, R=10 Ω/Km, L =
3.8mH/Km, G =1x10-6^ mho/Km, C = 0.0085 μF/Km
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL
Z (^) o
Z = R+jωL = 10 + j(6280)(3.8x10-3) = 25.87∠67.26°
Y = G+jωC = 1x10-6^ +j(6280)(0.0085x10-6) = 5.339x10-5∠88.
°
Zo
∠
Zo
Zo = 696.06 ∠ -10.
° Ω
The propagation constant is given by,
P γ 25. 87 67. 26 5. 339 10 ∠
P γ 1. 3812 10
P=γ = α+jβ = 0.03716 ∠78.095° (Or) 7.6657x10-3+j0.
attenuation constant, α = 7.6657x10-3^ Np/Km
and phase constant, β = 0.03636 rad/Km
Reflection Coefficient, K
R O
R O
200 696. 06 10. 84
e e e βl e ( 0. 03636 )( 100 )
γl (α jβ)l αl ( 7. 665710 )( 100 )
3 = = ∠ = ∠
−
e e ( 0. 03636 )( 100 )
γl ( 7. 665710 )( 100 )
3 = ∠
− × rad
e
γl = e0.76657^ ∠208.3°
e
γ l = 2.1524 ∠ 208.3 °
e e e βl e ( 0. 03636 )( 100 )
γl (α jβ)l αl ( 7. 665710 )( 100 ) 3 = = ∠− = ∠ −
− − − + − − ×
e e ( 0. 03636 )( 100 )
γl ( 7. 665710 )( 100 )
3 = ∠ −
− − − × rad
e-
γl = e-0.76657^ ∠-208.3°
e-
γ l = 0.4646 ∠ -208.3 °
−
−
γl γ l
γl γ l
s o e Ke
e Ke Z Z
Z (^) s 696. 06 10. 84
Z (^) s 696. 06 10. 84
PR = 0.1486 x 7.43x10-4^ W
PR = 1.1041x10-4^ W
Transmission Efficiency, 100 P
η S
R = ×
4
× ×
−
−
η = 6.907 %
capacitance of 0.008 μf /km. Calculate the attenuation constant, velocity and
wavelength of the line at 1000 Hz.
[EC2305-NOV/DEC 2016](6 Marks), [EC2305-MAY/JUN 2015](6 Marks),
[EC2305-APR/MAY/JUN 2016](4 Marks)
Solution:
Given: l=64Km, R=13 Ω/km, C=0.008 μf /km, f=1000 Hz
ω = 2πf = 2x3.14x1000 = 6280
The characteristic impedance is given by,
G jω C
R jωL Z (^) o
j( 6280 )( 0. 008 10 )
o (^) − 6 ×
j 5. 024 10
o (^55) × ∠
− −
o 3
∠ − ×
−
Zo = 509.31 ∠ -
°
The propagation constant is given by,
P γ ( 13 ) ( j( 6280 )( 0. 008 10 ))
− 6 = = × ×
5 P γ 13 j 5. 024 10
− = = × ×
P γ 6. 5312 10 90
4 = = × ∠
−
P=γ = α+jβ = 25.56x10-3^ ∠ 45 ° (Or) 0.01807+j0.
attenuation constant, α = 0.01807 Np/Km
and phase constant, β = 0.01807 rad/Km
The velocity of propagation is given by,
β
ω v (^) p =
v
5 p = = ×
. 01807
2 π
β
2 π λ = = =
G =10 -5^ mho/m. Find the input impedance at a frequency of (^)
2 π
Hz, if the
line is very long. [EC2305-NOV/DEC 2013] (6 Marks)
Solution:
Given: L = 10 mH/m, C = 10 -7^ F/m, R = 20 Ω/m and G =10 -5^ mho/m,
2 π
f
ω = 2πf = 2π x (^)
2 π
The characteristic impedance is given by,
G jω C
R jωL Z (^) o
10 j( 5000 )( 10 10 )
20 j( 5000 )( 10 10 ) Z 5 7
3
o (^) − −
−
10 j 5 10
20 j 50 Z o (^544) × ∠
− − −
Z (^) o
= ∠ −
Zo = 327.59 ∠ -10.
° Ω
ohms at a frequency of 800 Hz. At this frequency, the propagation constant is
0.054(0.0366+j0.99). Determine R and L.
[EC2305-NOV/DEC 2013] (6 Marks), [EC2305-NOV/DEC 2010] (6 Marks)
Solution:
Given: Zo=2309.6 Ω , f=800Hz, P=γ=0.054(0.0366+j0.99) = 0.054∠87.
°
ω = 2πf = 2 x 3.14 x 800 = 5024
R=jωL = ZoP = 2309.6 x 0.054∠87.
°
= 4.57+j124.