Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fluid Mechanics and Heat Transfer in a Nuclear Reactor, Papers of Software Engineering

A collection of formulas and calculations related to fluid mechanics and heat transfer in a nuclear reactor. It includes formulas for Reynolds number, Prandtl number, Nusselt number, and heat transfer coefficient, as well as calculations for pressure drop, friction factor, and pump power. The document also includes a table with various values for different materials and conditions.

What you will learn

  • What is the formula for Reynolds number?
  • What is the Nusselt number and how is it used?
  • How is the Prandtl number calculated?
  • How is pressure drop calculated in a nuclear reactor?
  • What is the table of values in the document for?

Typology: Papers

2019/2020

Uploaded on 10/09/2020

redmi-xhiaomi
redmi-xhiaomi 🇹🇷

6 documents

1 / 16

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
ﺔﻳﺮﺸﻧمﻮﻠﻋ ﻚﻴﻧﺎﻜﻣ رد ﻲﺗﺎﺒﺳﺎﺤﻣ و يدﺮﺑرﺎﻛ
ةرﺎﻤﺷ ،ﻢﻬﻧ و ﺖﺴﻴﺑ لﺎﺳود، 1397
/ﻚﻴﻳﺎﺘﻟوﻮﺘﻓ ﻢﺘﺴﻴﺳ ﻚﻳ ﺮﺑ تارذﻮﻧﺎﻧ ﻞﻜﺷ ﺮﺛا ياراد ﻲﻟﺎﻴﺳﻮﻧﺎﻧ ﻲﺗراﺮﺣﺰﻛﺮﻤﺘﻣ ﺪﻨﻨﻛة يﻮﻤﻬﺳ ﻲﻄﺧ
دﺮﻓ ﻲﻧادﺰﻳ هﺪﻳﺮﻓ
)1(
ﻢﻴﻫاﺮﺑا نﺎﺴﺣا نﺎﺘﺴﺠﺑ ﺎﻴﻧ
)2(
يﺮﻣﺎﻋ ناﺮﻬﻣ
)3(
هﺪﻴﻜﭼ
رد ﻦﻳا ،ﺶﻫوﮋﭘ ﻚﻳ ﻢﺘﺴﻴﺳ ﻚﻴﻳﺎﺘﻟوﻮﺘﻓ/ ﻲﺗراﺮﺣ ﺎﺑ ﺪﻨﻨﻛﺰﻛﺮﻤﺘﻣة ﻮﻤﻬﺳي- ﻲﻄﺧ ﻪﻴﺒﺷ يزﺎﺳ هﺪﺷ و ﺮﺛا هدﺎﻔﺘﺳا زا لﺎﻴـﺳﻮﻧﺎﻧ ﺪﻴـﺴﻛا
مﻮﻴﻨﻴﻣﻮﻟآ/ ﻦﻠﻴﺗا لﻮﻜﻴﻠﮔ: بآ 50:50 ياراد تارذﻮﻧﺎﻧ ﻒﻠﺘﺨﻣ ،ﻲﺘﻛﻼﭘ ﻪﻧاﻮﺘﺳا،يا ﻪﻐﻴﺗيا ويﺮﺟآ ﻞﻜﺷ ﺮﺑ رﺎﻛاﻲﻳ اﻦﻳ ﻢﺘﺴﻴ د زاهﺎﮔﺪﻳ ژﺮﻧاي و
ژرﺰﮔاي ﺮﺟ ود ردنﺎﻳ ﺳرﺮﺑ شﻮﺸﻐﻣ و مارآ .ﺖﺳا هﺪﺷلﺪﻣ دﺎﻬﻨﺸﻴﭘ هﺪﺷ هدﺎﻔﺘﺳاﺎﺑ ﺎﺘﻧ زاﺞﻳ ﺎﻣزآﻲﻫﺎﮕﺸﻳ ﺠﻨـﺳرﺎﺒﺘﻋا دﻮﺟﻮﻣ هﺪـﺷ ﺖـﺳا و
ﺒﺳﺎﻨﻣ ﻖﺑﺎﻄﺗ ﻦﻴ ﺎﺘﻧﺞﻳ هﺪﻫﺎﺸﻣﻳدﺮﮔ هﺪ.ﺖﺳا ﺟﻮﺗﺎﺑ ﻪﺑ،ﺞﻳﺎﺘﻧ ﺳﻮﻧﺎﻧ زا هدﺎﻔﺘﺳالﺎﻴ تارذﻮﻧﺎﻧ ﺎﺑ ﻪﻧاﻮﺘـﺳايا ﻞﻜـﺷ ﺮﺟ رد نﺎـﻳ تارذﻮﻧﺎـﻧ و مارآ
يﺮﺟآ ﻞﻜﺷ
رد نﺎﻳﺮﺟ شﻮﺸﻐﻣ ﺮﺠﻨﻣ ﻪﺑ ﺮﺜﻛاﺪﺣ هدزﺎﺑ ﻢﺘﺴﻴﺳ ﻲﻣددﺮﮔ .ﻪﺑ هوﻼﻋ، هدﺎﻔﺘﺳا زا لﺎﻴﺳﻮﻧﺎﻧ رد نﺎﻳﺮﺟ مارآ ﺖﺒﺴﻧ ﻪﺑ نﺎﻳﺮﺟ شﻮـﺸﻐﻣ
ياﺮﺑ دﻮﺒﻬﺑ دﺮﻜﻠﻤﻋ ﻢﺘﺴﻴﺳ ﻚﻴﻳﺎﺘﻟوﻮﺘﻓ/ ﻲﺗراﺮﺣ ﺮﺛﺆﻣﺮﺗ ﺖﺳا.
هژاو يﺪﻴﻠﻛ يﺎﻫ /ﻚﻴﻳﺎﺘﻟوﻮﺘﻓ ﻢﺘﺴﻴﺳ شﻮﺸﻐﻣ نﺎﻳﺮﺟ ،مارآ نﺎﻳﺮﺟ ،لﺎﻴﺳﻮﻧﺎﻧ ،تارذﻮﻧﺎﻧ ﻞﻜﺷ ،ﻲﺗراﺮﺣ.
Nanoparticle Shape Effect on a Nanofluid-Based Parabolic Trough Concentrating
Photovoltaic/Thermal System
F. Yazdanifard E. Ebrahimnia-Bajestan M. Ameri
Abstract In this study, a linear parabolic trough concentrating photovoltaic/thermal system has been
simulated and the effects of using Al2O3/ethylene glycol-water 50:50 nanofluid with different nanoparticle
shapes including platelet, cylindrical, blade and brick shapes from energy and exergy standpoints in the
laminar and turbulent regimes have been numerically investigated. The proposed model has been
validated using existing experimental results where good agreement was observed. The results indicated
that using nanoparticles of cylindrical shape in laminar regime and brick-shaped one in turbulent regime
lead to the best system performance compared to others. In addition, applying nanofluid in laminar
regime is more effective compared to turbulent regime.
Key Words Photovoltaic/Thermal system, Nanoparticles shape, Nanofluid, Laminar flow, Turbulent
flow
ﻪﻟﺎﻘﻣ ﺖﻓﺎﻳرد ﺦﻳرﺎﺗ 8/11/95 نآ شﺮﻳﺬﭘ ﺦﻳرﺎﺗ و 18/4/96 ﻲﻣ ﺪﺷﺎﺑ. DOI: 10.22067/fum-mech.v29i2.62148
)1( ﺠﺸﻧاديﺮﺘﻛد يﻮ ،ﻚﻴﻧﺎﻜﻣ ﻲﺳﺪﻨﻬﻣ ،ﺮﻨﻫﺎﺑ ﺪﻴﻬﺷ هﺎﮕﺸﻧاد، نﺎﻣﺮﻛ.
)2 ( :لﻮﺌﺴﻣ ةﺪﻨﺴﻳﻮﻧﻚﻴﻧﺎﻜﻣ ﻲﺳﺪﻨﻬﻣ هوﺮﮔ ،رﺎﻳدﺎﺘﺳا هﺎﮕﺸﻧاد ،ﻲﺘﻌﻨﺻ ،نﺎﭼﻮﻗ
e.ebrahimnia@qiet.ac.ir
)3( ،ﻚﻴﻧﺎﻜﻣ ﻲﺳﺪﻨﻬﻣ ،دﺎﺘﺳاﺮﻨﻫﺎﺑ ﺪﻴﻬﺷ هﺎﮕﺸﻧاد، نﺎﻣﺮﻛ.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff

Partial preview of the text

Download Fluid Mechanics and Heat Transfer in a Nuclear Reactor and more Papers Software Engineering in PDF only on Docsity!

1397 ،دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺑﻴﺴﺖ ﺳﺎل ﻣﻜﺎﻧﻴﻚ در ﻣﺤﺎﺳﺒﺎﺗﻲ و ﻛﺎرﺑﺮديﻋﻠﻮمﻧﺸﺮﻳﺔ

ﺧﻄﻲﺳﻬﻤﻮيةﻛﻨﻨﺪﻣﺘﻤﺮﻛﺰداراي ﻧﺎﻧﻮﺳﻴﺎﻟﻲ ﺣﺮارﺗﻲ /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ ﻳﻚ ﺑﺮ ﻧﺎﻧﻮذرات ﺷﻜﻞ اﺛﺮ ( 3 ) ﻋﺎﻣﺮي ﻣﻬﺮان ( 2 )ﺑﺠﺴﺘﺎن ﻧﻴﺎ اﺑﺮاﻫﻴﻢ اﺣﺴﺎن ( 1 ) ﻓﺮد ﻳﺰداﻧﻲ ﻓﺮﻳﺪه

اﻛﺴـﻴﺪ ﻧﺎﻧﻮﺳـﻴﺎل از اﺳﺘﻔﺎدهاﺛﺮ و ﺷﺪه ﺳﺎزي ﺷﺒﻴﻪ ﺧﻄﻲ-ي ﺳﻬﻤﻮة ﻣﺘﻤﺮﻛﺰﻛﻨﻨﺪ ﺑﺎ ﺣﺮارﺗﻲ / ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ ﻳﻚ پژوﻫﺶ، اﻳﻦ در چﻜﻴﺪه وي اﻧﺮژﻳﺪگﺎه د ازﻴﺴﺘﻢ ﺳﻳﻦاﻳﻲا ﻛﺎر ﺑﺮ ﺷﻜﻞآﺟﺮيواي ﺗﻴﻐﻪاي، اﺳﺘﻮاﻧﻪ پﻼﻛﺘﻲ، ﻣﺨﺘﻠﻒ ﻧﺎﻧﻮذرات داراي 50:50آب : گﻠﻴﻜﻮل اﺗﻴﻠﻦ / آﻟﻮﻣﻴﻨﻴﻮم و اﺳـﺖ ﺷـﺪهﻲ اﻋﺘﺒﺎرﺳـﻨﺠ ﻣﻮﺟﻮدﻳﺸگﺎﻫﻲ آزﻣﺎﻳﺞ ﻧﺘﺎ از ﺑﺎاﺳﺘﻔﺎده ﺷﺪه پﻴﺸﻨﻬﺎدﻣﺪل .اﺳﺖ ﺷﺪهﻲ ﺑﺮرﺳ ﻣﻐﺸﻮش و آرامﻳﺎن ﺟﺮ دو درياگﺰرژ ﻧـﺎﻧﻮذرات و آرام ﻳـﺎن ﺟﺮ در ﺷـﻜﻞاي اﺳـﺘﻮاﻧﻪ ﻧﺎﻧﻮذرات ﺑﺎﻴﺎل ﻧﺎﻧﻮﺳ از اﺳﺘﻔﺎدهﻧﺘﺎﻳﺞ،ﺑﻪﻪ ﺑﺎﺗﻮﺟ .اﺳﺖ ﺪهگﺮدﻳ ﻣﺸﺎﻫﺪهﻳﺞ ﻧﺘﺎﻴﻦﺑﻲﻣﻨﺎﺳﺒ ﺗﻄﺎﺑﻖ ﻣﻐﺸـﻮش ﺟﺮﻳﺎن ﺑﻪ ﻧﺴﺒﺖ آرام ﺟﺮﻳﺎن در ﻧﺎﻧﻮﺳﻴﺎل از اﺳﺘﻔﺎده، ﻋﻼوهﺑﻪ .گﺮدد ﻣﻲ ﺳﻴﺴﺘﻢ ﺑﺎزده ﺣﺪاﻛﺜﺮ ﺑﻪ ﻣﻨﺠﺮ ﻣﻐﺸﻮش ﺟﺮﻳﺎن در ﺷﻜﻞآﺟﺮي

. اﺳﺖﺗﺮ ﻣﺆﺛﺮ ﺣﺮارﺗﻲ / ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ ﻋﻤﻠﻜﺮد ﺑﻬﺒﻮد ﺑﺮاي .ﻣﻐﺸﻮش ﺟﺮﻳﺎن آرام، ﺟﺮﻳﺎن ﻧﺎﻧﻮﺳﻴﺎل، ﻧﺎﻧﻮذرات، ﺷﻜﻞ ﺣﺮارﺗﻲ،/ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ ﻛﻠﻴﺪي ﻫﺎي واژه

Nanoparticle Shape Effect on a Nanofluid-Based Parabolic Trough Concentrating Photovoltaic/Thermal System F. Yazdanifard E. Ebrahimnia-Bajestan M. Ameri

Abstract In this study, a linear parabolic trough concentrating photovoltaic/thermal system has been simulated and the effects of using Al2O (^) 3/ethylene glycol-water 50:50 nanofluid with different nanoparticle shapes including platelet, cylindrical, blade and brick shapes from energy and exergy standpoints in the laminar and turbulent regimes have been numerically investigated. The proposed model has been validated using existing experimental results where good agreement was observed. The results indicated that using nanoparticles of cylindrical shape in laminar regime and brick-shaped one in turbulent regime lead to the best system performance compared to others. In addition, applying nanofluid in laminar regime is more effective compared to turbulent regime.

Key Words Photovoltaic/Thermal system, Nanoparticles shape, Nanofluid, Laminar flow, Turbulent flow

DOI: 10.22067/fum-mech.v29i2.62148.ﺑﺎﺷﺪﻣﻲ 96 / 4 / 18 آن پﺬﻳﺮش ﺗﺎرﻳﺦ و 95 / 11 / 8 ﻣﻘﺎﻟﻪ درﻳﺎﻓﺖ ﺗﺎرﻳﺦ  .ﻛﺮﻣﺎن،ﺑﺎﻫﻨﺮ ﺷﻬﻴﺪ داﻧﺸگﺎهﻣﻜﺎﻧﻴﻚ، ﻣﻬﻨﺪﺳﻲ ،دﻛﺘﺮي ﻮيداﻧﺸﺠ( 1 ) e.ebrahimnia@qiet.ac.irﻗﻮچﺎن،ﺻﻨﻌﺘﻲداﻧﺸگﺎه ،ﻣﻜﺎﻧﻴﻚ ﻣﻬﻨﺪﺳﻲ گﺮوه اﺳﺘﺎدﻳﺎر،:ﻣﺴﺌﻮل ﻧﻮﻳﺴﻨﺪة( 2 ) .ﻛﺮﻣﺎن،ﺑﺎﻫﻨﺮ ﺷﻬﻴﺪ داﻧﺸگﺎهﻣﻜﺎﻧﻴﻚ، ﻣﻬﻨﺪﺳﻲ اﺳﺘﺎد،( 3 )

1397 ،دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺑﻴﺴﺖ ﺳﺎل ﻣﻜﺎﻧﻴﻚ در ﻣﺤﺎﺳﺒﺎﺗﻲ و ﻛﺎرﺑﺮدي ﻋﻠﻮم ﻧﺸﺮﻳﺔ

گـﺎز و ﻧﻔـﺖ ﻣﻨـﺎﺑﻊ دﻳگـﺮ، ﻃﺮف از .[1]ﺷﻮدﻣﻲ ﻣﻴﻦﺄ ﺗ

ﻫـﺎيﺳـﻮﺧﺖ آﻻﻳﻨﺪگﻲ ﺑﺤﺚ ﻫﻤچﻨﻴﻦ، .[2] اﺳﺖ ﺷﺪه

اﺳﺘﻔﺎده ﺑﻨﺎﺑﺮاﻳﻦ، .[1] اﺳﺖ ﺷﺪه زده ﺗﺨﻤﻴﻦ ﻋﺎﻟﻲ اﻳﺮان

ﺣﺮارﺗﻲ /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚﻫﺎيﺳﻴﺴﺘﻢ اﻧﻮاع، اﻳﻦ از ﻳﻜﻲ. [3]

راﺳـﺘﺎ، اﻳـﻦ در .[4]ﺑﺎﺷـﻨﺪ ﻣـﻲ ﺑﺎﻻﺗﺮ ﻛﻴﻔﻴﺖ ﺑﺎ ﺣﺮارﺗﻲ

ﺳـﻬﻤﻮي ﻫـﺎيﻛﻨﻨـﺪهﻣﺘﻤﺮﻛـﺰ ﺑﻴﻦ اﻳﻦ در .[5]اﻧﺪگﺮﻓﺘﻪ

ـﻮرتﺻـــﻪﺑــ 2005 ـﺎلﺳــ در[6] ـﺎوﻧﺘﺮيﻛــ .ـﺖاﺳــ

/ﻓﺘﻮوﻟﺘﺎﻳﻴـﻚﻫﺎيﺳﻴﺴﺘﻢ ﻋﻤﻠﻜﺮد 2011 ﺳﺎل در [7, 8]

ﺳﻴﺴـﺘﻢ ﻳـﻚ 2012 ﺳﺎل در[9] ﻫﻤﻜﺎران و ﺟﻲ .دارﻧﺪ

ﻳـﻚ 2012 ﺳـﺎل در[10]ﻫﻤﻜـﺎران و ﻛﺎﻟﻴﺴـﻪ .ﻳﺎﺑﺪﻣﻲ

ـﺘﻢﺳﻴﺴـ ـﻚﻳـ 2013 ـﺎلﺳـ در[11] ـﺎرانﻫﻤﻜـ و ـﺎنچﺎﺑـ

ﺳـﺎل در[12] ﻫﻤﻜﺎران و ﻛﻮل دل .دارد ﺗﻨﻬﺎ ﻓﺘﻮﻟﺘﺎﻳﻴﻚ

1397 ،و

در C ୩

ة

، دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺖ

wﻋﺮض و dx ﻮﻧ ﺑـﺮاي ﺳـﺘﻔﺎده پ ﺣــﺮارت ــﺎل ﺗﺮﻣﻮﻓﻴﺰﻳﻜﻲ ص ﺷپﻮچﺸـﻢ ، ﺗـﻲ ﻧﺎﻧﻮﺳـﻴﺎل ﺟـﺰ ﻪ ﺮگ ﻇﺮﻓﻴـﺖﺎﺑﻞ ﻫﺮ ﺑﺮاي اﻧﺮژي .ﺳﺖ اﻓﺰارﻧﺮم از زي راﻧگ روش از ي هﺷﺪاﺳﺘﻔﺎده اﺑﻂ ا ﺷـﺪهاراﺋـﻪ( 2 گﻠﻴﻜـﻮ اﺗﻴﻠﻦ :ب ﻮآﻟ اﻛﺴﻴﺪ ذرات

ﻣﺘﻤﺮﻛﺰﻛﻨﻨﺪةﺑﺎرﺗﻲ

ﺖﺑﻴﺴ ﺳﺎل

xﻃﻮلﺑﻪ ﻧﺴﻴﻠﻲ ﺳا ﻣـﻮرد ﺿـﻴﺎت ـاﻧﺘﻘاز ﻋﺒﺎرﺗﻨــﺪ ﺧﻮا گﺮﻓﺘﻦﻧﻈﺮ ﺣﺮارﺗ /وﻟﺘﺎﻳﻴـﻚ ﺑـﻪاﺟﺰاﺔﻫﻤةژ ﺎدرﻣﻘآن ﺑﻮدن ﺰ ﻣﻌﺎدﻻت ﺿﻴﺎت ﺳا ﺷﺪه اراﺋﻪ( 1 ﺳﺎﺷﺒﻴﻪ ﺑﺮاي ﺶ، ياﻧﺮژﺔﻣﻮازﻧ ت رو .اﺳﺖ ﺷﺪه 2 ) ﺟـﺪول در بآ ﻣﺨﻠﻮط ﻔﺎده، ﻧﺎﻧﻮذ داراي ﻛﻪ

رﺣﺮا /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺧﻄﻲﺳﻬﻤﻮي

ردA ଶوAଵﺖ

ﺳﻴﺴﺘﻢ 1 ﺷﻜﻞ

15 ﺳــﺎل در [

ﺳ در[23]ﺎران

ﻣﻜﺎﻧﻴﻚ در ﺎﺳﺒﺎﺗﻲ

2 2]ﻫﻤﻜــﺎران

ﻣﺤﺎ و ﻛﺎرﺑﺮدي ﻮم

ﻋﻠﻮ ﻧﺸﺮﻳﺔ

ﻋﺎﻣﺮي

I୆ CRρ

h୮୴ି ୟ hୟୠୱି ୲

hୟୠୱି

h୲ି୵ (

: [29]

x ∗^ =

Nu୵ =

زﻳـﺮ ﺔ

Nu୵ =

ﻣﻬﺮان - ﺑﺠﺴﺘﺎن ﻧﻴﺎ

ρୡ୭୬ γ୲ α (^) ୮୴ ቂ1 − = ൫h୰,୮୴

ୟୠୱ ൫T୮୴ − Tୟୠୱ ୲ (Tୟୠୱ − T୲ )w = ୧ (Tୟୠୱ − T୧ )w (T୲ − T୵ )wdx

C

]ﺷﻮدﻣﻲ ﺤﺎﺳﺒﻪ

L RePrD = ቐ

1.953(x ∗^ ) 4.364 +^0 ﺔ ـراﺑﻄ از ﺳـﻠﺖ

= (^) 1 + 12.7(f⁄(f 8⁄ )(R

ﻧﻴ اﺑﺮاﻫﻴﻢ اﺣﺴﺎن -

[24]رﺗﻲ

− pa × η (^) ୰ ቀ ୴ିୟ + hୡ,୮୴ିୱ ൯

  • h ୱ ൯wdx = hୟୠୱ wdx + h୮୴ି୲ ൫T = h୲ି୵ (T୲ − T wdx + h୲ି୧ (T୲ x = mሶ C (^) ୮ dT୵

ρ (^) ୬୤ = (

C (^) ୮,୬୤ =

(1 − φ

μ୬୤ μୠ୤= 1 k (^) ୬୤ k (^) ୠ୤

)ିଵ/ଷ^ x ∗^ ൑

x ∗^ x^

∗ (^) ൐

ﺳﻧﺎ ﻋﺪد ﻐﺸﻮش : [ Re − 1000)P ⁄ ) 8 ଵ ଶ⁄^ (Pr ଶ/ଷ

ﻓﺮد ﻳﺰداﻧﻲ ﻓﺮﻳﺪه

ﺣﺮار /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚﻢ اﻧﺮژيﺔﻟ − β (^) ୰ ൫T୮୴ − T୰ ൯൫T୮୴ − Tୟ ൯w h୮୴ି୲ ൫T୮୴ − T ୱି୲ (Tୟୠୱ − T୲ ) T୮୴ − T୲ ൯wdx T୵ )wdx + h୲ି − T୧ )wdx = h

ﻧﺎﻧﻮﺳﻴﺎﻻت ﻮاص راﺑﻄﻪ − φ)ρ (^) ୠ୤ + φ φ)൫ρC (^) ୮ ൯ (^) ୠ୤ + φ ρ (^) ୬୤

  • Aଵ φ + A (^) ଶ φ

= 1 + C୩ φ

൑ 0. ൐ 0. ﻐﻣ ﺟﺮﻳﺎن ﺑﺮاي 0 ]گﺮددﻣﻲ ﺳﺒﻪ r − 1)

ﻢﺳﻴﺴﺘ اﺟﺰاي ﺮژي ﻣﻌﺎدﻟ T୰ ൯ቁቃ wdx wdx + h୮୴ିୟୠ ୱ T୲ ൯wdx )wdx + hୟୠୱି xି ୧ (T୲ − T୧ )wd h୧ିୟ (T୧ − Tୟ )

ﻮﺧ ﺑﺮاي ﺷﺪه ﺳﺘﻔﺎده

φρ (^) ୬୮ φ൫ρC (^) ୮ ൯ (^) ୬୮

φଶ

در

... ﻲﺣﺮارﺗ /

ﺮاﻧﺔ ﻧﻣﻮاز ﻣﻌﺎدﻻت

ୱ൫T୮୴ − Tୟୠୱ ൯w

୧ (Tୟୠୱ − T୧ ) w

x wdx

اﺳرواﺑﻂ 2 ﺟﺪول ﻣﺮﺟﻊ [25]

[26]

[27]

[28]

[27] آﻟﻮﻣﻴﻨﻴﻮم ﺪ

ܥ௞ﺛﺎﺑﺖ و ﻜﻮزﻳﺘﻪ اﻛﺴﻴﺪ ﻧﺎﻧﻮذرات ﻒ

A (^) ଶ 612 / 6 123 / 3 904 / 4 471 / 4

/ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ

ﻣ 1 ﺟﺪول

wdx

wdx

ﺟ ﺻﻴﺖ گﺎﻟﻲ

گﺮﻣﺎﻳﻲ ﺖ

ﻜﻮزﻳﺘﻪ

ﺣﺮارﺗﻲ ﻲ

ﺪاﻛﺴﻴ ﻧﺎﻧﻮذرات ﻒ

ﻜوﻳﺴﺔراﺑﻄ در ܣ (^) ଶ ﻒﻣﺨﺘﻠ ﺷﻜﻞ ﺑﺮاي [27, 28]ﻣﻴﻨﻴﻮم Aଵ C (^) ୩ 37 / 1 2 / 6 14 / 6 2 / 7 13 / 5 3 / 9 1 / 9 3 / 3

ﺳ ﻳﻚ ﺑﺮ ﻧﺎﻧﻮذرات

ﺟﺰء

ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ

ﺣﺮارﺗﻲ ب ﻟﻮﻟﻪ ﻋﺎﻳﻖﺔ ﻳ ﻛﻦ ﺧﻨﻚ

ﺻﺧﺎ چگ

ﻇﺮﻓﻴﺖ

وﻳﺴﻜ

رﺳﺎﻧﺎﻳﻲ

ﻒﻣﺨﺘﻠ اﺷﻜﺎل 2 ﻞ

وܣଵﻫﺎيﺎﺑﺖ ﺛ ﺣﺮارﺗﻲ رﺳﺎﻧﺎﻳﻲ آﻟﻮﻣ ୩ ﻧﺎﻧﻮذره 61 ﻼﻛﺘﻲ 74 اي ﻴﻐﻪ 95 اي ﺘﻮاﻧﻪ 37 ﺟﺮي

ﻧ ﺷﻜﻞ اﺛﺮ

ﻓ پﺎﻧﻞ

ﺟﺎذب

ﻻﻳ ﺳﻴﺎل

ﺷﻜﻞ

3 ﺟﺪول ﺔ راﺑﻄ

ﻧﻮع پﻼ ﺗﻴ اﺳﺘ آﺟ

ﻋﺎﻣﺮي

،% 1

، 0 / 9 :ﻲ

ﻣﻬﺮان - ﺑﺠﺴﺘﺎنﻧﻴﺎ

5 : ﻣﺮﺟﻊ ﺳﻠﻮل ده

310 Wm-1^ K -

1 kgs -^1 :ﻣﻐﺸﻮش ن ﻲﻓﺸﺮدگ ﺿﺮﻳﺐ ، 3

ﻣﻐﺸﻮش :ب

ﻣﻐﺸﻮش :

وﻣﺘﻔﺎ روﻧﺪي ﻫﺪ ر ـﻦاﻳـ ـﻴﺢﺗﻮﺿـ

ﻧﻴ اﺑﺮاﻫﻴﻢ اﺣﺴﺎن -

0 / 95 :ﻣﻤﺎﻧﻌﺖ ﺐ ﺑﺎزد، 100 Wm-1^ K 298 K:ﻣﺮﺟﻊ 310 Wm-1^ K -^1 (^1) : ﺣﺮارﺗﻲ ﻫﺪاﻳﺖ 0 / 03 Wm-1^ K - نﺟﺮﻳﺎ در ﺟﺮﻣﻲ ﻲ 30 ° :ﻛﻠﻜﺘﻮر ﺷﻴﺐ

ب آرام، :اﻟﻒ ﺟﺮﻳﺎن

:ب آرام، :اﻟﻒ ﺮﻳﺎن

ﻫﺷﺎ اﻣﺎ ﻳﺎﺑﺪ،ﻣﻲ ـﺮايﺑـ .ـﺘﻴﻢﻫﺴـ

ﻓﺮد ﻳﺰداﻧﻲ ﻓﺮﻳﺪه

ﺳﺎزيﺷﺒﻴﻪ ﺮاي پﺎراﻣﺘﺮ ﺐﺿﺮﻳ ، 0 / 8 :ﻌﻜﺎس K-1:ﺣﺮارﺗﻲ ﺪاﻳﺖ ﻣ دﻣﺎي، 0 / 0045 K :ﺣﺮارﺗﻲ ﻫﺪاﻳﺖ ﺐ ﺿﺮﻳﺐ، 2 m: ﻃﻮل (^1) :ﺣﺮارﺗﻲ ﻫﺪاﻳﺖ دﺑﻲ، 0 / 12 kgs -1 :م ، 700 Wm-2 :ﺘﻘﻴﻢ 0 / 8 :پﻤپ ه

ﺟ ﺑﺮايﻣﺘﻔﺎوت ت

ﺮﺟ ﺑﺮايﻣﺘﻔﺎوتت

ﻣ ﻛﺎﻫﺶ وﻟﺘﺎﻳﻴﻚ ﻫ ـﻮشﻣﻐﺸـ ـﺎنـ

ﺮﺑ ﻧﻴﺎز ﻣﻮرد ﺮﻫﺎي

ﻌاﻧ ﺿﺮﻳﺐ ، 15 :ﻛﺰ ﻫﺪ ﺿﺮﻳﺐ، 0 / 9 :ﺎر K-1 :ﻣﺮﺟﻊ دﻣﺎﻳﻲ ﺐ ﺿﺮﻳﺐ، 0 / 003 m ﻃﻮ، 0 / 003 m:ﺎﻣﺖ ﺿﺮﻳﺐ، 0 / 05 m آرا ﺟﺮﻳﺎن درﺮﻣﻲ ﻘﻣﺴﺘ ﺗﺎﺑﺶ ، 298 K ﺑﺎزده

تﻧﺎﻧﻮذرا ﺷﻜﻞ و ﻲ

تﻧﺎﻧﻮذرا ﺷﻜﻞ و ﻲ

در ﺎي

... ﺣﺮارﺗﻲ /

ﺎراﻣﺘﺮپ 6 ﺟﺪول

ﺗﻤﺮﻛ ﻧﺴﺒﺖ اﻧﺘﺸﺎﺿﺮﻳﺐ، 0 / 9 ﺐﺿﺮﻳ :ﺿﺨﺎﻣﺖ ﺿﺨﺎ، 0 / 03 m :ﺧﻠﻲ :ﺿﺨﺎﻣﺖ ﺟﺮ دﺑﻲ، 298 K: ي K:ﻣﺤﻴﻂدﻣﺎي ، (^1) / 5

ﺣﺠﻤﻲ ﻛﺴﺮ ﺑﺎ ﻳﻴﻚ

ﺣﺠﻤﻲ ﻛﺴﺮ ﺑﺎ ﺟﻲ

اﺳـﺖ، ﺸـﺨﺺ دﻣـﺎ ﻧـﺎﻧﻮذرات

/ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ

:ﺟﺬب ﺿﺮﻳﺐ

داﺧ ﻗﻄﺮ

ورودي دﻣﺎي ms -1:ﺑﺎد ﺳﺮﻋﺖ

ﻳﻓﺘﻮوﻟﺘﺎ دﻣﺎي ﻴﺮات

ﺧﺮوﺟ دﻣﺎي ﻐﻴﻴﺮات

ﺸﻣ ( 3 ) ﺷـﻜﻞ ﺣﺠﻤـﻲ ﻛﺴـﺮ

ﺳ ﻳﻚ ﺑﺮ ﻧﺎﻧﻮذرات

ﺟﺰء ﺳﻬﻤﻮي ﻛﻨﻨﺪة ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺔ

(ﻣﺴﻲ) ﺟﺎذب (ﻣﺴﻲ) ﻪ ﻋﺎﻳﻖﺔ ﻳ ﻟﻮﻟﻪ درون ﺳ پﺎراﻣﺘﺮﻫﺎ ﺮ

ﻴﺮﺗﻐﻴ 3 ﺷﻜﻞ

ﻴﺗﻐ 4 ﺷﻜﻞ

از ﻛـﻪ ﻃـﻮرﻤﺎن اﻓﺰاﻳﺶ ﻛ ﺑﺎ آرام

ﺷﻜﻞ ﻧ اﺛﺮ

ﻛﻣﺘﻤﺮﻛﺰ ﺔﺻﻔﺤ

ﺟﺔﺻﻔﺤ ﻟﻪﻟﻮ ﻻ ﺳﻴﺎل ﺳﺎﻳﺮ

1397 ،دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺑﻴﺴﺖ ﺳﺎل ﻣﻜﺎﻧﻴﻚ در ﻣﺤﺎﺳﺒﺎﺗﻲ و ﻛﺎرﺑﺮدي ﻋﻠﻮم ﻧﺸﺮﻳﺔ

آرام ﺟﺮﻳﺎن در ﻧﺎﻧﻮذرات ﻣﺨﺘﻠﻒ ﺣﺠﻤﻲ ﻛﺴﺮﻫﺎي و ﺷﻜﻞ ﺑﺎ ﻧﺎﻧﻮﺳﻴﺎل ﻫﺎيوﻳژگﻲ ﺗﻐﻴﻴﺮات 7 ﺟﺪول ﺷﻜﻞ ﻧﺎﻧﻮذرات

ﻛﺴﺮ ﺣﺠﻤﻲ

ߩ௡௙ ߩ௕௙

ܿ ௣,௡௙ܿ ௣,௕௙

ߤ (^) ௡௙ ߤ (^) ௕௙

݇ ݇௡௙ ௕௙

ﺣﺮارت (Wm اﻧﺘﻘﺎل-2K ﺿﺮﻳﺐ-1 ) ﻧﺎﺳﻠﺖ ﻋﺪد پﺮاﻧﺘﻞ ﻋﺪد رﻳﻨﻮﻟﺪز ﻋﺪد

پﻼﻛﺘﻲ

212 / 385 17 / 183 28 / 904 1570 / 767 1 1 1 1 % 0 214 / 243 16 / 891 39 / 280 1097 / 974 1 / 026 1 / 432 0 / 975 1 / 024 % 1 216 / 062 16 / 611 51 / 767 792 / 341 1 / 052 1 / 987 0 / 950 1 / 047 % 2 217 / 843 16 / 341 66 / 011 591 / 611 1 / 078 2 / 664 0 / 928 1 / 071 % 3 219 / 589 16 / 081 81 / 709 455 / 552 1 / 104 3 / 464 0 / 905 1 / 094 % 4 212216 // 385105 1716 // 183818 2833 // 904173 15701283 // (^7673161) / (^10391) / 2251 0 / 9751 1 / 0241 %% (^01) اي اﺳﺘﻮاﻧﻪ

1397 ،و

، دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺖ

ﻣﻐﺸﻮش :ب

ﻣﻐﺸﻮش :ب

ﺖﺑﻴﺴ ﺳﺎل

آرام، :اﻟﻒ ﺟﺮﻳﺎن

آرام، :اﻟﻒ ﺟﺮﻳﺎن

ﺑﺮايﻣﺘﻔﺎوترات

ﺑﺮايﻣﺘﻔﺎوترات

رﻧﺎﻧﻮذ ﺷﻜﻞ و ﺠﻤﻲ

رﻧﺎﻧﻮذ ﺷﻜﻞ و ﻤﻲ

ﺠﺣ ﻛﺴﺮ ﺑﺎ ﻜﺘﺮﻳﻜﻲ

ﺣﺠﻤ ﻛﺴﺮ ﺑﺎ ﺮارﺗﻲ

ﻣﻜﺎﻧﻴﻚ در ﺎﺳﺒﺎﺗﻲ

ﻜاﻟ اﻧﺮژي ﺑﺎزده ت

ﺣ اﻧﺮژي ﺑﺎزده ات

ﻣﺤﺎ و ﻛﺎرﺑﺮدي ﻮم

تﺗﻐﻴﻴﺮا 5 ﺷﻜﻞ

اﺗﻐﻴﻴﺮ 6 ﺷﻜﻞ

ﻋﻠﻮ ﻧﺸﺮﻳﺔ

ﻋﺎﻣﺮي

ﻣﻬﺮان - ﺑﺠﺴﺘﺎنﻧﻴﺎ

ﻣﻐﺸﻮش :ب

ﻣﻐﺸﻮش :ب ،

ﻧﻴ اﺑﺮاﻫﻴﻢ اﺣﺴﺎن -

ب آرام، :اﻟﻒ ﺟﺮﻳﺎن

آرام :اﻟﻒ ﺟﺮﻳﺎن ي

ﻓﺮد ﻳﺰداﻧﻲ ﻓﺮﻳﺪه

ﺟ ﺑﺮايﻣﺘﻔﺎوتت

يﺑﺮاﻣﺘﻔﺎوتذرات

تﻧﺎﻧﻮذرا ﺷﻜﻞ و ﻲ

ذﻧﺎﻧﻮ ﺷﻜﻞ و ﺠﻤﻲ

... ﻲﺣﺮارﺗ /

ﻲﺣﺠﻤ ﻛﺴﺮ ﺑﺎ ﻛﻠﻲ

ﺣﺠ ﻛﺴﺮ ﺑﺎ ﻜﺘﺮﻳﻜﻲ

/ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ

اﻧﺮژي ﺑﺎزده ﻴﺮات

اﻟﻜ اگﺰرژي ﺑﺎزده ت

ﺳ ﻳﻚ ﺑﺮ ﻧﺎﻧﻮذرات

ﻴﺗﻐﻴ 7 ﺷﻜﻞ

تﺗﻐﻴﻴﺮا 8 ﺷﻜﻞ

ﺷﻜﻞ ﻧ اﺛﺮ

ﻋﺎﻣﺮي ﻣﻬﺮان - ﺑﺠﺴﺘﺎن ﻧﻴﺎ اﺑﺮاﻫﻴﻢ اﺣﺴﺎن - ﻓﺮد ﻳﺰداﻧﻲ ﻓﺮﻳﺪه ...ﺣﺮارﺗﻲ /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ﺳﻴﺴﺘﻢ ﻳﻚ ﺑﺮ ﻧﺎﻧﻮذرات ﺷﻜﻞ اﺛﺮ

در و ـﺰاﻳﺶاﻓـ آرام ـﺎنﺟﺮﻳـ در ـﻞﻛـ ـﺮژياﻧـ ـﺎزدهﺑـ  .ﻛﻨﺪﻣﻲ پﻴﺪا ﻛﺎﻫﺶ ﻣﻐﺸﻮش ﺟﺮﻳﺎن ﻳﺎﺑـﺪﻣـﻲ اﻓﺰاﻳﺶ آرام ﺟﺮﻳﺎن در ﻛﻞ اگﺰرژي ﺑﺎزده  ﻛـﻞ اگـﺰرژي ﺑﺎزده ﻣﻐﺸﻮش ﺟﺮﻳﺎن در ﻛﻪﺣﺎﻟﻲدر ﺷـﻜﻞايﺗﻴﻐـﻪو اياﺳﺘﻮاﻧﻪ پﻼﻛﺘﻲ، ﻧﺎﻧﻮذرات ﺑﺮاي ﺷـﻜﻞآﺟـﺮيةﻧـﺎﻧﻮذر ﺑـﺮايوﻟـﻲ ﻳﺎﺑﺪ، ﻣﻲ ﻛﺎﻫﺶ و % 1 ﺣﺠﻤـﻲ ﻛﺴﺮ ﺗﺎ اگﺰرژي ﺑﺎزده اﻓﺰاﻳﺶ ﺷﺎﻫﺪ

. ﻫﺴﺘﻴﻢ آن ﻛﺎﻫﺶ ﺳپﺲ آرام ﺟﺮﻳﺎن درﺷﻜﻞاياﺳﺘﻮاﻧﻪﻧﺎﻧﻮذرات از اﺳﺘﻔﺎده  ﻣﻨﺠـﺮ ﻣﻐﺸﻮش ﺟﺮﻳﺎن درﺷﻜﻞآﺟﺮي ﻧﺎﻧﻮذرات و .ﺷﻮدﻣﻲ اگﺰرژي و اﻧﺮژي ﺑﺎزده اﻛﺜﺮﺣﺪ ﺑﻪ

اﻧگﻠﻴﺴﻲ ﻢﻋﻼﻳ (m^2 )ﻣﺴﺎﺣﺖ ܣ ﺗﻤﺮﻛﺰ ﻧﺴﺒﺖ ܴܥ (m)ﻗﻄﺮ ܦ اﺻﻄﻜﺎك ﺿﺮﻳﺐ f Wm ) ﺟـﺎﻳﻲﻪ ﺟﺎﺑ ﺣﺮارت اﻧﺘﻘﺎل ﺿﺮﻳﺐ ℎ (^) ௖ -2 (^) K - (^1 (Wm-2^ K -1) ﺗﺎﺑﺸﻲ ﺣﺮارت اﻧﺘﻘﺎل ﺿﺮﻳﺐ ℎ (^) ௥ (Wm-2) ﻢﻣﺴﺘﻘﻴ ورودي ﺗﺎﺑﺶ ﺷﺪت ܫ஻ (m) ﻢﺳﻴﺴﺘ ﻃﻮل ܮ (kgs -1 ) ﺟﺮﻣﻲ دﺑﻲ ݉ ሶ ﻧﺎﺳﻠﺖ ﻋﺪد Nu ﻓﺸﺮدگﻲ ﺿﺮﻳﺐ pa (Pa ) ﻓﺸﺎر ܲ پﺮاﻧﺘﻞﻋﺪد Pr رﻳﻨﻮﻟﺪز ﻋﺪد Re (K ) دﻣﺎ ܶ

(m) ﻋﺮض ݓ ﻳﻮﻧﺎﻧﻲ ﻢﻋﻼﺋ ﺟﺬب ﺿﺮﻳﺐ ߙ ﻊﻣﺮﺟ ﺷﺮاﻳﻂ در دﻣﺎﻳﻲ ﺿﺮﻳﺐ ߚ௥ ﻣﻤﺎﻧﻌﺖ ﻋﺎﻣﻞ ߛ௧ (kgm-3) چگﺎﻟﻲ ،اﻧﻌﻜﺎس ﺿﺮﻳﺐ ߩ ﺑﺎزده ߟ ﻊﻣﺮﺟ ﺷﺮاﻳﻂ در ﺧﻮرﺷﻴﺪي ﺳﻠﻮل ﺑﺎزده ߟ (^) ௥ (Wm-2^ K -4)ﺑﻮﻟﺘﺰﻣﻦ اﺳﺘﻔﺎن ﺛﺎﺑﺖ ߪ ﻋﺒﻮر ﺿﺮﻳﺐ ߬ ﻛﻠﻜﺘﻮر ﺷﻴﺐ ߠ ﺣﺠﻤﻲ ﻛﺴﺮ ߮ ﻫﺎ زﻳﺮﻧﻮﻳﺲ ﻫﻮاﺔ ﻳﻻ ܽ ﺣﺮارﺗﻲ ﺟﺎذب ܾܽݏ ﺣﺮارﺗﻲ رﺳﺎﻧﺎي چﺴﺐ ݀ܽ ℎ ﻟﻮﻟﻪ اﺗﺼﺎل ܾ پﺎﻳﻪ ﺳﻴﺎل ݂ܾ ﻣﺘﻤﺮﻛﺰﻛﻨﻨﺪه ܿ݊݋ ﻋﺎﻳﻖﺔ ﻳﻻ ݅ ﻧﺎﻧﻮﺳﻴﺎل ݂݊ ﻧﺎﻧﻮذره ݊݌ ﻓﺘﻮوﻟﺘﺎﻳﻴﻚﺔ ﺤﺻﻔ ܸܲ ﺣﺮارﺗﻲ /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ܸܲܶ/ ﻣﺘﻤﺮﻛﺰﻛﻨﻨﺪهﺑﺎﺣﺮارﺗﻲ /ﻓﺘﻮوﻟﺘﺎﻳﻴﻚ ܶ/ܸܲܥ ﻟﻮﻟﻪ ݐ ﺣﺮارت اﻧﺘﻘﺎلﻋﺎﻣﻞﺳﻴﺎل ݓ

1397 ،دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺑﻴﺴﺖ ﺳﺎل ﻣﻜﺎﻧﻴﻚ در ﻣﺤﺎﺳﺒﺎﺗﻲ و ﻛﺎرﺑﺮدي ﻋﻠﻮم ﻧﺸﺮﻳﺔ

  1. Najafi, G., Ghobadian, B., Mamat, R., Yusaf, T. and Azmi, W., "Solar energy in Iran: Current state and outlook", Renewable and Sustainable Energy Reviews, Vol. 49, pp. 931-942, (2015).
  2. Shafiee, S. and Topal, E., "When will fossil fuel reserves be diminished?", Energy policy, Vol. 37, No. 1, pp. 181-189, (2009).
  3. Makki, A., Omer, S. and Sabir, H., "Advancements in hybrid photovoltaic systems for enhanced solar cells performance", Renewable and Sustainable Energy Reviews, Vol. 41, No. 0, pp. 658-684, (2015).
  4. Saharaf, O.Z. and Orhan, M.F., "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I–Fundamentals, design considerations and current technologies", Renewable and Sustainable Energy Reviews , Vol. 50, pp. 1500-1565, (2015).
  5. Saharaf, O.Z. and Orhan, M.F., "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II–Implemented systems, performance assessment, and future directions", Renewable and Sustainable Energy Reviews, Vol. 50, pp. 1566-1633, (2015).
  6. Coventry, J.S., "Performance of a concentrating photovoltaic/thermal solar collector", Solar Energy, Vol. 78, No. 2, pp. 211-222, (2005).
  7. Li, M., Ji, X., Li, G., Wei, S., Li, Y. and Shi, F., "Performance study of solar cell arrays based on a trough concentrating photovoltaic/thermal system", Applied Energy, Vol. 88, No. 9, pp. 3218-3227, (2011).
  8. Li, M., Ji, X., Li, G., Yang, Z., Wei, S. and Wang, L., "Performance investigation and optimization of the Trough Concentrating Photovoltaic/Thermal system", Solar Energy , Vol. 85, No. 5, pp. 1028- 1034, (2011).
  9. Ji, X., Li, M., Lin, W., Wang, W., Wang, L. and Luo, X., "Modeling and characteristic parameters analysis of a trough concentrating photovoltaic/thermal system with GaAs and super cell arrays", International Journal of Photoenergy , Vol. 2012, (2012).
  10. Calise, F., Palombo, A., and Vanoli, L., "A finite-volume model of a parabolic trough photovoltaic/thermal collector :Energetic and exergetic analyses", Energy , Vol. 46, No. 1, pp. 283- 294, (2012).
  11. Chaabane, M. ,Charfi, W., Mhiri, H and Bournot, P., "Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems", Solar Energy , Vol. 98, pp. 315-321, (2013).
  12. Del Col, D., Bortolato, M., Padovan, A. and Quaggia, M., "Experimental and numerical study of a parabolic trough linear CPVT system", Energy Procedia , Vol. 57, pp. 255-264, (2014).
  13. Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I. and Wongwises, S., "A review of the applications of nanofluids in solar energy", International Journal of Heat and Mass Transfer , Vol. 57, No. 2, pp. 582-594, (2013).
  14. Mahian, O., Kianifar, Kleinstreuer, C., Al-Nimr, M.A, A., Kalogirou, Pop, I., Sahin, A.Z. and Wongwises, S., "A review of entropy generation in nanofluid flow", International Journal of Heat and Mass Transfer , Vol. 65, pp. 514-532, (2013).
  15. Cui, Y. and Zhu, Q., "Study of Photovoltaic/Thermal Systems with MgO-Water Nanofluids Flowing

1397 ،دو ﺷﻤﺎرة ﻧﻬﻢ، و ﺑﻴﺴﺖ ﺳﺎل ﻣﻜﺎﻧﻴﻚ در ﻣﺤﺎﺳﺒﺎﺗﻲ و ﻛﺎرﺑﺮدي ﻋﻠﻮم ﻧﺸﺮﻳﺔ

  1. Bergman, T.L., Lavine, A.S. and Incropera, F.P., " Fundamentals of Heat and Mass Transfer , 7th Edition", John Wiley & Sons, New York, (2011).