Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Regression Extensions - Econometric Analysis of Panel Data - Lecture Slides, Slides of Econometrics and Mathematical Economics

Regression Extensions, Linear Individual Effects Models, Heteroscedasticity, Autocorrelation, Covariance Structures, Measurement Error, Spatial Autocorrelation, LSDV Residuals are points which describes this lecture importance in Econometric Analysis of Panel Data course.

Typology: Slides

2011/2012

Uploaded on 11/10/2012

uzman
uzman 🇮🇳

4.8

(12)

148 documents

1 / 60

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Econometric Analysis of Panel Data
7. Regression Extensions of Linear
Individual Effects Models
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c

Partial preview of the text

Download Regression Extensions - Econometric Analysis of Panel Data - Lecture Slides and more Slides Econometrics and Mathematical Economics in PDF only on Docsity!

Econometric Analysis of Panel Data

7. Regression Extensions of Linear

Individual Effects Models

Extensions

 Heteroscedasticity

 Autocorrelation

 Covariance Structures

 Measurement Error

 Spatial Autocorrelation

OLS Estimation

i

i i

1

N N

i 1 i 1

[ ] =

[ ] u + =

Coefficient Estimator, M = F or R

Robust C

= =

F F

i i i i F i

R R

i i i R i

M M M M

M i i i i

Fixed Effects : y X D ε Z θ w

Random Effects : y X β i ε Z θ w

Least Squares

θ Z Z Z y

1 1

N N N

i 1 i 1 i 1

ovariance Matrix based on the White Estimator

Est.Asy.Var[ ]

− −

= = =

M M M M M M M M

M i i i i i i i i

θ Z Z Z w w Z Z Z

GLS Estimation

2 2 2 2 2

u i

2

1

N N

i 1 i 1

No natural format (yet)

[I ]=

, I

ε ε ε

= =

i

M -1 M M -1 M -

R i i i i i i i

Fixed Effects :

Random Effects : Ω ii + I = ii Φ

(Feasible) Generalized Least Squares

θ Z Φ Z Z Φ y Φ

2

i

1

2 N

i 1

Est.Asy.Var[ ]

ε =

M -1 M

R i i i

ii

θ Z Φ Z

Baltagi and Griffin’s Gasoline Data

World Gasoline Demand Data, 18 OECD Countries, 19 years

Variables in the file are

COUNTRY = name of country

YEAR = year, 1960-

LGASPCAR = log of consumption per car

LINCOMEP = log of per capita income

LRPMG = log of real price of gasoline

LCARPCAP = log of per capita number of cars

See Baltagi (2001, p. 24) for analysis of these data. The article on which the

analysis is based is Baltagi, B. and Griffin, J., "Gasoline Demand in the OECD: An

Application of Pooling and Testing Procedures," European Economic Review, 22,

1983, pp. 117-137. The data were downloaded from the website for Baltagi's

text.

Heteroscedastic Gasoline Data

Baltagi Gasoline Data - 18 countries, 19 years

COUNTRY

3.

4.

4.

5.

5.

6.

6.

3.

0 5 10 15 20

LGASPCAR

Evidence of Heteroscedasticity

Country Specific Residual Variances

COUNTRY

.

.

.

.

.

.

0 5 10 15 20

VI

Heteroscedasticity in the FE Model

 Ordinary Least Squares

 Within groups estimation as usual.

 Standard treatment – this is just a (large) linear

regression model.

 White estimator

i

1

N N

i 1 i 1

1 1

N N T 2 N

i 1 i 1 ,it it i it i i 1

1

N N

i 1 i 1

Var[ | ] ( )( )

White Robust Covariance Matrix Estimator

Est.Var[ | ]

= =

− −

= = ε =

= =

= Σ Σ Σ σ − − Σ

i i

i D i i D i

i i

i D i t=1 i D i

i

i D i

b X M X X M y

b X X M X x x x x X M X

b X X M X

i

1

T 2 N

it it i it i i 1

e ( )( )

=

i

t=1 i D i

x x x x X M X

Heteroscedasticity in Gasoline Data

+----------------------------------------------------+

| Least Squares with Group Dummy Variables |

| LHS=LGASPCAR Mean = 4.296242 |

| Fit R-squared = .9733657 |

| Adjusted R-squared = .9717062 |

+----------------------------------------------------+

Least Squares - Within

+---------+--------------+----------------+--------+---------+----------+

|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|

+---------+--------------+----------------+--------+---------+----------+

LINCOMEP .66224966 .07338604 9.024 .0000 -6.

LRPMG -.32170246 .04409925 -7.295 .0000 -.

LCARPCAP -.64048288 .02967885 -21.580 .0000 -9.

+---------+--------------+----------------+--------+---------+----------+

White Estimator

+---------+--------------+----------------+--------+---------+----------+

LINCOMEP .66224966 .07277408 9.100 .0000 -6.

LRPMG -.32170246 .05381258 -5.978 .0000 -.

LCARPCAP -.64048288 .03876145 -16.524 .0000 -9.

+---------+--------------+----------------+--------+---------+----------+

White Estimator using Grouping

+---------+--------------+----------------+--------+---------+----------+

LINCOMEP .66224966 .06238100 10.616 .0000 -6.

LRPMG -.32170246 .05197389 -6.190 .0000 -.

LCARPCAP -.64048288 .03035538 -21.099 .0000 -9.

Feasible GLS

i

T 2

2

it

,i

i

e

ˆ

T

ε

 

Σ

σ = 

 

t=

2

,it

2 2 2

it i ,i i ,i

1

N N

i 1 i 1

Requires a narrower assumption, estimation of is not feasible.
(Same as in cross section model.)
E[ | ] ; Var[ | ] =

ε

ε ε

= =

i

i -1 i i -1 i

i D i D i i D i D i

X ε X I Ω
β X M Ω M X X M Ω M y

1

N N

i 1 i 1 2 2

,i ,i

= weighted within groups LS with constant weights within groups.

= =

ε ε

i i

i D i i D i

X M X X M y

i i i

2

,i

y
(Not a function of. Proof left to the reader.)

ε

x β

Modeling the Scedastic Function

2 2

,i i i

2 2

,i i

2 2

,i i

Suppose = a function of , e.g., = f( ).

Any consistent estimator of = f( ) brings

full efficiency to FGLS. E.g.,

= exp ( )

Estimate using ordinary least squares app

ε ε

ε ε

ε ε

′ σ σ

′ σ σ

σ σ

z z δ

z δ

z δ

2 2

it i it

lied to

log(e ) log + + w

Second step FGLS using these estimates

ε

′ = σ z δ

Two Step Estimation

i

T 2

2 2 2 it

,iR ,iM i

i

Benefit to modeling the scedastic function vs. using the robust estimator:

e

vs. = exp ( ) ˆ ˆ ˆ

T

Inconsistent; T Consistent in N

is fixed.

ε ε ε

σ = σ σ

t=

z δ

Fixed T is irrelevant

Does it matter? Do the two matrices converge to the same matrix?

N N

i 1 i 1 2 2

,iR ,iM

vs.

N N

It is very unlikely to matter very much.

What if we use Harvey's maximum likelihood estimator instead of LS.

Unlikely t

= =

ε ε

σ σ

i i

i D i i D i

X M X X M X

o matter. In Harvey's model, the OLS estimator is consistent in NT.

Downside: What if the specified function is wrong.

Probably still doesn't matter much.

Ordinary Least Squares

 Standard results for OLS in a GR model

 Consistent

 Unbiased

 Inefficient

 Variance does (we expect) converge to zero;

1 1

N N N

i 1 i 1 i 1

N N N N

i 1 i i 1 i i 1 i i 1 i

1 1

N N N

i 1 i i 1 i i 1 i i N

i 1 i i i i

Var[ | ]

T T T T

f f f , 0 < f < 1.

T T T T

− −

= = =

= = = =

− −

= = =

=

i i i i i i i

ii i i i i ii i

X X X Ω X X X

b X

X X X Ω X X X

Estimating the Variance for OLS

i

i

1 1

N N T 2 N

i 1 i 1 it it it i 1

T 1 N

i=1 t=1 it it t=

White correction?

Est.Var[ | ]= e

Does this work? No. Observations are correlated.

Cluster Estimator

Est.Var[ | ] ( ) ( e )(

− −

= = =

i i t=1 i i

b X X X x x X X

b X X'X x

i

T 1

it it

e ) ( )

x X'X