Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Numpy methods with examples, Exercises of Computer Science

This study document provides a comprehensive overview of NumPy, a powerful Python library for numerical computing. The document covers essential topics, including: 1. Detailed explanations of core concepts such as arrays, array creation, indexing, slicing. 2. key mathematical operations and functions supported by NumPy. Almost all the topics has ben discussed in this pdf. 3. Practical examples and code snippets for hands-on learning.

Typology: Exercises

2023/2024

Available from 11/22/2024

sandra-rajan-1
sandra-rajan-1 🇮🇳

1 document

1 / 11

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2
3
Numpy
paiilan)
2-D
as
p.asany
2,3,4,31)
P
an
hp.aacy
C42)
e
leen1
Ly2,34,
5]
<e
lass
'humpry
neaMRoy'
np.anay
Ce,
3)
L45,6)
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Numpy methods with examples and more Exercises Computer Science in PDF only on Docsity!

2

3

Numpy

paiilan)

2-D

as p.asanyP 2,3,4,31)

hp.aacyan (^) eC42)leen

Ly2,34, 5] <e lass 'humpry neaMRoy'

np.anayCe,^ 3)^ L45,6)

ndim t6 cbeck the no | dimensi'ons aa st (^) ndmin to (^) de<ine

npasacyC2,3,4,51, ndmin 5)

Annay Inding

tophint

pant

43

3-D arYay

Nagalve

1be no

LC2[4, 5,3] 6)| o’’ dimesio

anA LO)

a dimensiohs (5an array

(2,3)C4,5,]

[1,s,4]

’ to^ access^ the

have

anACcIlastelement.

PRA

(2]

2

Houw may 2-D ous Lib ong

dim no. elegens

at 1be

4322

each

look no.o’ Os 2 dim’

Fut (4)ci>

3

shape >22,e

nlim’

L

C11,20)

L1S,16(i3,14]

C, 12]

C5) 6]]

(c 2), C?,4], (5,6)

C34] \u,

(ls,6],

t341]

Caeuith (^) ale valuescan (^) aray (^) using last value ol 1he

shape

|Alwagsbe

3-D

24,6,8, 1D

To the values

hdmn (^) sing, a and veyisg

P arayC^ C24E8,lo^ nclmin=^ e)

L3,4)

imens/'o

Reshape (^) fom bpto 2-D

hee

using a vecto

’eghape C4,2 22

tbe

the

d = 6

cçmension

qns

gnaally yeino ouag y acking along

X=

joins ansay^ along^ columns^ Csam^ as^ hs^ tacy

parayIC96L1,81J)

X- np con ceden ateCenl,an axis=o)

L3, 4],

Ls,6),

hp aYray^ C^ Ci,2,33^ c4,5,^ J]) bp (^) concatenate CCat (^) ae), (^) axis=)

etackCCass (3,4]

preyCe23,C3,4) 2

sie ol^ all^ inpt^ arays^ should^ be shape np. slack’ uil increase The iensis

the unò ensionstack abog^ begbl nparrag Qc2, c aT2- np araydsackCoasl, C(C 5,63, CJ, aY a11) 22) pruot(np

same.

None, ar ays ane

9ncoeasy

{latteos d bfane

Meun bp-muan

mean

a [I4,(15,6, I11, 12, 21, 23,8, 44],193,

03, 2, 54 ), 4]]

phunlCap-meanCas)

|

np mean priolCnp:me an^ Cane,^ axy^ o)) t 23

wl| laten^ the^ caray^ ecod^ The

2 mean & [in: |44 |7+12+23 t 44 13t6t 21t3+ 9 234 2t 54+ (t

12

(

axy o’column

54 moah

prinT Cnp^ mLan^ Cas,^ axU^ =1))

31- 8-

23

15-

24.0 D |5 00

\6.

1h2 lan

22- 22-

Man

a9M= np-a((5P5cuy^ CC5,^ 3,5)

54 3]]

pintCnp mazCa)

painl Cop.maxCar,(5,4,^ 5]axy^ =o))

pxin1Lop-marl as, xu-)

(Bame {or np meay

to

3 5]

4heue

Dp. obee

min mill

an it

wel]

the

NaN

flatten

ancl then od Vlue lo 1he arny, Dpnan mean, np hanmAr, hp:napmin