Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Network analysis frequency domain study notes, Lecture notes of Network Analysis

Notes given are of frequency domain and are really good

Typology: Lecture notes

2024/2025

Uploaded on 05/04/2025

cmhawk
cmhawk 🇮🇳

1 document

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Network analysis frequency domain study notes and more Lecture notes Network Analysis in PDF only on Docsity!

1 _ —_— a { | © He Step Function and Associatecl Waveform | . bi wit) ja defined a4 The anik atop fonction aw x § SSSSPAVAAAAAAAAAAAAY A VOVvv VEU eEULLEUGUEEGEECeCoCessscEe ~ ~ amplinde 1 and pero 2T tor E20. At) Using Aime ahifting property, — ' woe Con wArte 3 T = Ath) = ul) -2(t-D+ 24 (4-27) - 2 ult-3T) 4+... Another w b t aero a frenction. where arguement Lecomer negotire cyclically. wo: fm) ae Another Way je by defining Aignum func. sgn[ fo} = 1 Fflt>° =o flt)=o --1 f(t) 0 Zt —> é €5 % & 2 & t 4 &, 5b function san he atfined Aewrdtically o Foving property ) Slo) = d(t)=0 fo to L) The arta undy Sb) ia O+ f sce at = fs ot A 3 ily <) Entire arco uncer Slt) 0 cm 0- oo dl) = = J at = [ S(Qolt =o Oo+ Mirivative of A Abp function oG Aeght A gelds an impulse function ASCE-T) wh tHe oliscontinur’g wo ak T. PUVVVVWOVEUHUELUUEELEGEEUESESEEEYS £y £4 4) wing this, any oliscont uty shouts Bowe ar impulae frurctior Sit-T) at the pocak of dideontinun &y 4 =T. . Dig continurty Aecght A is given a0 Ae £CTH- £1) Le $10 Le olefined as 4) fr 6ST ao £ lt), tue wothout Denrvative of f> fib = fin+A slt-T) Conoioer A Aquare woe flt)= Ault-a)-Ault-b po, LI) = A dlt-a) — A SC4-6) 1 F ~A lrmacdy a function shou in kgure. 4 #08), flys 2 Alt) + 2u¢t-9) a, #lO= 2 ult) +2 6le9 o #0) f £) sle-1) t= $07) . ~o flt) slt-T) <0 for €#T 5 % T wee vaed fom -2 fo +0, ther %2 woul obtain Ontin'ly of Plt). Thin operation io aims [at bo Aeannhng of Abe function. f(t) ft) oO t t t > pprrrmor mo mdsdeshdQXXQQXXAAQar' — EE a ee es eee e) @ The Laplece Largo ect) The Kaphace Tram afew cs ae fon tan fio) Ets) be deiner ao LL 404) ] ae XT & (| = Fts) = Spe oy < fue Comper fee puineny yauable 82 7+ 7G. — Note: The integratim Lint io tek an O- te . Alcommoodlet, Aho pov A) of oliswons nhnty Cimpute) wn 40 ak &-0. 4. Step, donpolre eke. << | se muler sor she furction fa porsrm Captnce Wroil 4 A mnt fey the conoltiow | Livin {lili - - Ym f |fce)| ov’ lk < @ fer real, prorbie Tamme o- Nx@: A function 40 have Fourser Aranafem, i mate obey the lowes tors tion - < [ l£lee <2” . L anf hin or a Atep ‘oa wae me Oe astr Lronrgam, but < eit, parser Laphect — : ot i, a COnvengine peter A gundeon ~ Noe e ° peowe Laphok Anonatoun . he t* will nok OH ° t ; ee Onverse Mranrform L rea] « & too fi x [pio a ~ ov -jo &m Where a je a Mak pewrove quantity that so pectin Rin. par convirgenck acer C. ~ VUE EUEEESESEEESEEES vvve evve £4 £[ ¢U0))- Ele), tA 4l- 4*) t at |~ a fe! FCs) = | i) ee ot - = ; (=) = O- ,. (6) at ) Sg ft flf)- 2 u . 9 e + -B-a)t Fid= f o** yu ee dk= J on oe ~ eat |7 oa : (6-9) = £-0. @® Propertico of Laplace Damages OA finite sum 63) cpe4o]- 2 zie | a) t i ej. tf - — ZL [Aine } zj yar Ade = ! | = HS 2) | gt w Arte S% POVVVIVVEUEEEUSEESEEECEESEECESETCE gringrating by pote. we get “ t a t <[ J fod] « |< [ swat o- 0° J -At dt t zle 4 t Sinn 2° > 0 ao kro, Se Rowe f 4cae | t on t=o x fliaddz] 2 FW [fs dar] = Fe 4 & Le flt)= ult). fi alode = £ ud o- Lf tute] - luce) _ = a \ ° (iv) Differentiation Ay 4) Difgeerttiation hy 4° 1m compli froquency domain > PP PPPBsRrS Vw VG UVF OUECELECECECECEECECECCCEVCECCOOOOC EH Defra o fun chon fil) vhih in Aowe eo 4) Ayer tuve 0 oT. = alt) - alt-% 4 as C4) a LCqcj= f- fe = a posod As 41) ie pecodic func on AEE” - = tf t4_ pe have fil - Fia- J [= | £4 Find tae snveue dnowafow Of Fia)= WS __ (4+4) hw L tiati. property « -ak We . a wa ut) Lei). & (e . = (a sAunwt + w coowt) & Note thot 9 yin wt] oe =O- we Aave Maung 1 Evaluation @ Vreo of Laplore Jranrfoms 0 gale &4. 5- J oe an st dt. Faard g 0 Replace gr? by @t* phen the wntegratd becomes the Laplace Cronapom OG den ©. nw stfs 2 — ZL [sw ¢ J 42s Replacing 3-2, we Hoe $+ Z G: Le gs fre ol ue. Note thak thie in an been fancies jen feet ot hegre, YYYEFCGEGCLECCECCEEy I ) yeu” ) a Y 7 YS © Func snverse A vancgrmn of X(A). L [xt] > xo. x3)= Ray + Ke e-) Gr) (4 +2) Solving tor Ky, Ky And ke grrr Bie enol lution ja the snverse of x(a, -t -2t - z 4 elt) = ze -£ +48 Lf, / Kecl Aarne £3: binen Aho Act 0f simultaneous oAcfpeoti'at Lquationd an) +4) 4 y tt) +79) = sult) eile) + ut) +4) +39) = 5 SLE) fend K0Q and lt). " 1 Co-) = y Co-) =0. 3 A Dramaporming the Ack of equations, we Ace 2 (442) x04) + 4D YA - (4) XA) +4 @4+y9IA = © alee) (any) xa ; [ " (+) (asd | | XD * [A 7 Lx] = [@] x - ae D= 2542) CA43) ~-) (44D = gC Ar*eset+h)- [a7 gat) = Ay 2ZKREE [ety 2 Pe er (542245) - (+) 2a+2) , K,= + a —— sitll naam Fotuing fer X(8), X(d)2 -GA - 308 415 Ee 2 Vaing partial factions ACS 4244 5) Xt) = Ki Kae+ Ka = 24s (A, 24+ s) 5X8) > Ke 3. Azo D> X(R)-3_. = -83-36 4 A423 45 X= 2 gs4d + 1402) “ (A+ *4 a The inveroe zvancfour Lo [xesy] 4d xlt) = 3- (ec° Coo 2t - ae * bin 2t) uct) Scmblarty, 4 = (141 et cos2t +307 © sen at) uw) O Partial faction parr? — (a) Simple root (2) Complex conju gat pots &: Fls= NOS) p35 4 38 +? =¢- — -_ : a a4 2A+2 () Mulkiple yoots . Sines lege, of NUS) io Ai ghey phan Aayoe of DA), we ciwole NCA) by De). F(ae= (At) - A Aeezats ; an we note the dlenoninatey “O* be L (544-2442) 2 Ary) +! FA: B+ e (A+) -) OO it) +t = -t : Lt [Fw] - 4l)= Silt+ MO +2 (ain t - cost) —parppp pp yyy >>> >> od >> eoRRRBRVEDY ee — ei ee for He simple root b--2, we fae Ke Vs. ke GaAs) 2 7 (A%2 sts) - Fo, the complex conjugete Avot, (S*424+5 = (A+ i+ 2j) C3+ I. 2)) HX ttajps Ks jh, we Aave Ks -1 and Br 2 (4742445) s (4-4-jR—) (4-a +jp) 2 2 ee (oi+2)) +3 ** = 1-2j-4 +3 2J + —_. a A> (1 42j) 2 (-1+3)) -2 + 4j i-2y i = 2 a r 4 e whee g- 2+k Je d han Z So knverce Monofom xan Le utter ae £*[ed]= 2 os sn [-ftan'e +E) 2¢] os = ae* + Gos (2t — tad! 2) ‘ Lt He poots of FCA) olenominator he +jp) wa K-jB - Kc Theepere, Flad= hy + ____— “ (s- a cia)) . Me sn (Bt +4) rrp ppp ppp pp > ppd > vn e es dod &% iw > wh ey } u VUULULLOUUCUUCELCECCECECLECEYUYEY wuvvov We not. hat me’? . Meas p + J MAing = -26 4 j2A = 2jk, ) Multiple Asoo: Parkiel fraction involves Aepeatect fy: Method 4? Lee Fy, NO) _— U-45)" De® Wsth ruthiple rots of cages not aod, we Aare Kar N,C Fis)e Key Ky Be be 5 Oa) Ba SA ee) 4 she Hie AomaincnS Aired whee N,W)/D,ds) ja te bod Ko. Ki, Kaos Mer cupreviom The prettenr Define Fs) (6-4) FLA). Thus, lade ko t Ki (aay te © Feet sehen Ris) indicates nemrosning Lene thor Ko= (4-46)" Fis) Iho: Note: We know . ra Mefe appl, Are sore equation AP Wher we fue woul tna up ~f n (4-8). + RA) C-4o) n-2 EUW: K+ 2h AAdtoe + Kpa (n-@ Ae) + —_ ‘ ~- 1 as EC Therefore, K,< Z i) = Ao L bane K,-t A Fw) Simibarty, o6e Arawe ay fe _ Dn genmral, we hae y~ 1 Ah £9) js 42,.,04- vo yl det Ae As deze CR)= Anz ACA+I)" Ze Ols)= Keo 4 b+ to 4 A uy er Bt 4