Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Matrix Representation In Quantum Mechanic, Schemes and Mind Maps of Quantum Mechanics

Matrix Representation In Quantum Mechanic

Typology: Schemes and Mind Maps

2024/2025

Available from 04/17/2025

florent-agotra
florent-agotra 🇮🇳

7 documents

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Partial preview of the text

Download Matrix Representation In Quantum Mechanic and more Schemes and Mind Maps Quantum Mechanics in PDF only on Docsity!

Unit 4 | Mais Ke prrrevtation | © + Stratum Mechantus formutacten in 2. oli ffereut won “i — -_ Schroctinger's Wave Heiseuberg s Matri Mechawu Mechanics (Continuous Arasis System) ( Dicvete basi system) |Lineae Vechr Space| Tt cowists oh foo sett of | ements aucol op abyebric Auber: (1) a oet of vecto YF, 1 ---- andl a det Bt Bcablarsy a,b,c -----. . (2) Q cube for vecpy Aololitien Ano. a Aule fer Scaler prutti plication [Adaition Rute} This Rule har Some properties ee (2) Sh wd dG ate Vechs vf 4 Space, their Sum (b+ p )is ma vector of the Sewme Space. (by ped bey Ceommaterey (co) lpr P+ X -yr(¢th) (Ascciative ) ho (4) O+yp=P~to=- Y (met enist a 227 vector) (¢) Y +(-¥) = (-v)+Y = 0 [Symmetric or Tive se vec Mn (plication Rute 2 Py perties Like ! | (2) Product mh Geotar itt vecpr fv Another ; Gentnally. Vdd ant tim Veclr the ae any Latur Combinat he ar thd UL also a mn *4 Yi pies a8 bon) (+) alwtd)-ayr+ad ; (atb)y-ayt by | ernst) (c) a(by) = (ab)y —> [Awoutative (OO Te-yr=y & op =yord | IL-7 O vitor Scatar 0 > Rew Scalar [Sineation and Basis of a vechy Space | Vv A Sey Ron- 22m vers Pp dg... Pry dt sald fo be Linearly ivepensent if aud only if th | cpa pass f only tf the Selution > the 2 tits= 0 iy qug ._-e po 2 > Any =O ~ c=] Qut > there eubdls a set of BS alars | wolich qoe not at) Zen, Sothat it cau se euprettedl ay | . N i > Zadi t S HF, (=i panel §0, t 4; | set 15 seid to de Li neasly ale henclest Bincnsion?- 9 ib Jiven the Wwartimum numlser Liven independent vel - ace can have. “t d ber 4, Rinearly inole pendent Vectors At mantimum yum dao hos N, ie (d,,% ---4Fy) — “This space 7 said to be N- Amewionad’ , ai &, Ay a Re fe) D (6a,- 2a, \f + (-94, +3, )j > 0 | | Ay = ay [w--27 | | an I are Lintarly B2frsstect. | [he Hilbert Space (only Read) | St consists Pf a vects Y, bys Se of Seaton a,b,c wid satapy pour pospestia» (Berneted by H | OH Ba Linear Space, . GH has def [inne Pret ie( sly Foie | Scakar pydoluct anu elemeit yr with f us * dnner Product of tuo vec a cemplee Nurtber. | A Fentral comblen number oleneteol by | | (¥,4) woken (Cv. = Compl Noma) B Seater product rf p with f Lt equal A Comblex — conjugel of, Scatar product of df) voith a | (vid) =(P¥)" sue ©($, av, thta)= ald, vi) +b 4, Ys) tee [ (At. + hte) = a*(4v) + b*(do,0) [free |! ® (¥,y)- Ivo > o rs product af a we 4 with tel) qives + ve Veal Nimber aN (2) H AL Se nr abe : Thene exist a thy jae ti — HO SUch that I» even y oH aud € 70, there ebists at Le ast Or A Yy i | y — v, | < € (Oy Uy Complete ty I¥—Ye | = © Time &® The Physical state oh a system is yefruented in Pantin mechanics oe elomenl a Hilbert face, these cloments are” ca dled [Bat vec» | [Quantum state]: oot is a Linear vectr in a Linear “jector space which tects ott information stmt the deste. . Jf can be in the (orm ep ware fyrnction, mato anel ap inhan, Noawbos, bE reprucnted 4 (Cv) Kets 2, Clements oh a Vec4or Space [J ‘ olerioted /Ae presented Qs | >» @ | “> vi | Column vecfo ras'~ © elements * a clual Sfrace [ce Vector) d * Acpusented as < | > Ly] > [Row Ver} 61 2 [ Gra vechr] | ta-ket |s- Inner / Scalar Product <[7 > bra-kett — <4] ¥> Note: For every ket [y> there enislt a umigue , bra ! + Probebitity obiplitee | ix cL Leierl ha tatty of fay Dips ten in State [uy> Q [Un (simi Lave) ste, Be NP eajoy! Mi oe ile t Space oo ci [ines no ——— Learning we oh mati, = (Raasien) © Conjugate ef Q matin | | “A-firsi UW) _, ate fl-3 a] oO. -Y¥y (2) qj © ‘Tans pose of a matin — Duter Changi qieg: FOU L column ~ ~ — re I 4 "LE 3) carly 3) (2) Tran ese Conpugate ~e mabin ragr] MER 2] (yea Peat O°) “Ty” | * “| is i af gtat (>) snob, 2s Shes 0 tgs madi _ [ar - A] in --A | | Aji © ai) ay aij © flee mition | A Skew Hey mnifion (Anti her ual Hes) ian [an --a | | , we Mi tj | © Drtagat Her (D Unitary Mabie | AAT= ATA =I Aateata-z . AtT= 4! at = Act JAl= 2 (>) Stmilari ky Trav bor mation = PAP A 2 & 7 Similar Matrices © OL ALR matter ace Sinular tht Hees have : shame trace e pame het rel “Gees @) Diegonatizatton fe tiaiee election Hye a fe=rar | % ele ee be cing jin td A. Pr “J |e dj = oT oje Gera 4 ne ? Co fo Pea Cy] ~Pmatit (a ye a, x - . a,* ~) So now mu a comblen number 7epresenkd ay b, i bn | . = 8 a, by | n | Numeci cabs Ot Consider [pLtowing 2 Kets | lyy = ca) etl J¢7 = S ) ©) fina the bra <4], (8) Svaluate the Scalar proline <4] Vw? ora) BI-|4+& a 81+ [thy 1431 [ 4: Q. 2 Cousider tle stated | wz . ‘i | 4,7 > Th | b.4 7 ly? = “149 +2i/[4,> Where [di aul I¢.7 ane orthonormal, ® catetare [ys Ky aud

} not, noxmalize it (©) fre [v7 4 [47 Orthogonal ? we 'S er) sy] -G5 2 0) fou” t (6) The normalization 4b ) (-si)(si)+ 202) + ((-0) ° ~2517 44-1? ual to | tb 2, 254441 =] Zo | —_— aver mot normalize (a) [¥7 = [1] Other Melrod e Novmatize, Cel 4 ye | \4? “if |] wae cwlaarft ] cP f i] cee eer) 9.9 ape defi! ' ja)? fret)! (I+!)= 2 japr>= + CH? = 2 | are | Now, math ply vwoith = Ez] Ixy = Now , - | 1 gly? | Iv? set) } Ue elt ec) LUD? EO bates] it te vet (b) yr me ltir + pla Sep Chock normalise or vet ? (x)"* (zy = st% = zt x | (rot roret) 2 Normalize it lero Af di7e tly] Step g Noy mali zadion ; IAP, lal = | 2 4 a 4. J Nal ] JAI? = 4 4 A= oe | day Wr 2 Llyyt Bx [4 ig FR y7-B yr pur te [7 Je Now, Cheek normalize apain, (fs) * () +27 FOr wily 3} wwe wart probability, thou P _ ((5]°- Be lal 4