Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Linear Combination and Matrix Equations in Vector Space, Exercises of Linear Algebra

The concept of linear combinations in a vector space through examples and matrix equations. Students will learn how to determine if a vector is in the span of given vectors, express all solutions of a matrix equation in parametric vector form, and find nontrivial solutions of the homogeneous equation. Matrices and their corresponding reduced row echelon forms.

Typology: Exercises

2012/2013

Uploaded on 02/27/2013

seshu_lin3
seshu_lin3 🇮🇳

4

(3)

59 documents

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 205B QuJz 02 page 1 09/25/2009 Name wq,W .rJukns.
1. Let b and v}, V2, ..., Vn be vectors in Rm.. Complete the following sentence so that it gives the definition of linear
combination:. "\Ve sa,yb is a linear combination of the the vectors VI, V2, ..., Vn if and only if..."
,.. .;krt IJIiJjtscakrs; 0/,,.-) 01."in II( J~ k. 01,~r'" +0(...VI\ :::: ~.
~ --'
2.Wa,~ U3la,~ [J9l~~ m..~ [JJ ~,ktb~ [!] andc~ [!].
2A. Isb in the span of {at, a2, a;3, at}? Explain your answ€l". Show any matrices and corresponding rref's you use.
~Mj(rlf4J. (M/'r;x ~rffAftJtIdJ.J fi,~~K/~ i,
[
C, I10 I'][I30'1/j
~ 3 0'1 gIf> rrf ~0 0 I Zf .
-3 -'j Lj -~ 2CJ ' () () 0 0
.f . . I II. dJ ~.11!/jv'~ $rr~,( hy Ii IJq mAtfixh'
S!fJC< 1M; (H1.;/flX~VS ~Ji{J:m.' " I~ ..-10 =1.
)
, /- I'f) /t~-liIu- I'/'t!f ,nAIr/x IY/,e:se'lfi IN ~v~ Ox,+'" )('1
InCf}{I".{ Lent(ii/leI. If,J../'U 14,'..
JQ ~!Jot in -tht ~Ct~ t!~.I ~,If) ~} .
2B. Let Abe the matrix whose columns are aI, a2, a3 and~. Express all solutions of Ax =c in parametric vector
form, that is, as P + Vh'where p is a particluar solution of Ax = c and Vh is all solutions of the correspondinghomogeneous
.equation Ax = O. Show any relevant matrices used in your work. (ci,..c/,.fM\i.J ...:>
,~ ~4j"'~.vf1;'( IY/,.,fr,'..ttK)'" I! -;\. ~ Vh/
I10 \2<;l -t ('. (}, ~ ~;fJ! 7/p '. -'" ", \
]
<
:~. ~, : 'i (
)(. g-sx -lfx ;' g .:.f -3 - \
.~X~«-t; '. / 0'
~~i{/p~,1iA.mtfj svlvhh>-I')iV(1\ 0x: [X:J
=[IO X7..- zx..,
]:r~]+:1[0]+'II, [." ;'
. .-) X..,)c., J' o..} '.. 0J/
.~X"L ~~~ t:f~' free: ' ,~,..'
2C. Use your work in (2B) to find two nontrivial solutions 81 and S2 of Ax =O. CIRC~E yom an,swers. . . dj
~uitkr -ki- ~ 9~JAll (vlvfW..tjf)t<:: -0 eyv,) do recti, scl~ wefIt ~
to G~ vdJI!>fer X'lo ~)(,., IVr R/)Ct:t7~I .J-..I,u Xl.~2.awl )<,., =: 1. ;
Vh bJt)(s; 2
[
-1]
... '[,O
~
:::- [-f
l.
'" [-o
j'::' I-/~
](j'lOfc. fluf j 20 ~NOT/al/Jr/(~ ,
() -2. /) -z -z .M~et:W' Nt: ;t!ot /cJpiu,JJ,. fc:i,Ji;.;
I 0 I- ./
IiIb :::J':> /1/)
17>< C.../
2D. Now let Tbe the matrix whose cohunns are aI, a3 and ~(so Tlooks like A. if you .ake out A's second column).
\Vhat is Vianow? That is, what are the solutions of Tx = 07
(W/UIt!!It CtdtJtta.t, "AI'I~h b" ", )<.l3x")
~J [TI;] = f-~ ~
'11:1 )1,& ~'"
N
I
P
J[
I0 '-{
I
O
J
'1-,= - '1)<.., ~
'f () t'V 0I z 0~ )(t = - 2)(... 9' "'n=
-'1 () (J 0 0 () , I'
X, c,.1'~e.
(~ X' nJ)
x,PD

Partial preview of the text

Download Linear Combination and Matrix Equations in Vector Space and more Exercises Linear Algebra in PDF only on Docsity!

Math 205B QuJz 02 page 1 09/25/2009 Name wq,W .rJukns.

  1. Let b and v}, V2, ..., Vn be vectors in Rm.. Complete the following sentence so that it gives the definition of linear

combination:. "\Ve sa,y b is a linear combination of the the vectors VI, V2, ..., Vn if and only if..."

,.. .;krt IJIiJjt scakr s ; 0/,,.-) 01." in II( J~ k. 01,~ r'" + 0(... VI\ :::: ~.

~ --'

2. Wa,~ U3la,~ [J9l~~ m..~ [JJ ~,ktb~ [!] andc~ [!].

2A. Isb in the span of {at, a2, a;3, at}? Explain your answ€l". Show any matrices and corresponding rref's you use.

~ Mj(rlf4J. (M/'r;x ~rffAftJtIdJ.J fi, ~ ~K /~ i,

[ C, I 10 I' ] [^

I 3 0 '

~ 3 0 '1 g If> rrf ~ 0 0 I Z / f. j

-3 -'j Lj -~ 2CJ ' () () 0 0 .f.. I II. dJ ~

. 11!/jv'~^ $^ rr~,(^ hy^ Ii^ IJq mAtfixh'

S!fJC< 1M; (H1.;/flX ~ VS ~ Ji{J: m .' " I~.. -10 =1.

, € /- I ' f) / t ~ -liIu- I'/'t!f ,nAIr/x IY/,e:se'lfi IN ~v~ Ox, + '" )('

InCf}{I ".{ Len t (ii/leI. If,J.. /'U 14 , '..

JQ ~ !Jot in -tht ~Ct~ t! ~.I ~, If) ~}.

2B. Let A be the matrix whose columns are aI, a2, a3 and~. Express all solutions of Ax = c in parametric vector

form, that is, as P + Vh'where p is a particluar solution of Ax = c and Vh is all solutionsof the corresponding homogeneous

. equation Ax = O. Show any relevant matrices used in your work. (ci,..c/,.f M \i.J ...:>

,~ ~ 4j"'~.vf1;'( IY/,.,fr,'..ttK)'" I! -;. ~ Vh

I 10 \2<;l -t ('. (}, ~ ~ ; f J! 7 /p

", \

]

< :~. ~, : 'i ( )(. g-sx -lfx ;' g .:.f -3 - \

. ~ X ~ «-t; '. / 0'

~ ~ i{/p~,1iA.mtfj svlvhh>-I')iV(1\ 0 x:

[

X:

J

[

IO X7..- zx..,

]

:r~

] +: [ 0

]

+ 'II, [." ;'

. .-) X..,)c., J' o..} '.. 0 J/

. ~ X"L ~~~ t:f~' free: ' ,~,..'

2C. Use your work in (2B) to find two nontrivial solutions 81 and S2 of Ax = O. CIRC~E yom an,swers... dj

~uitkr -ki- ~ 9~J All (vlvfW..t j f)t< :: -0 eyv,) dof£ recti, scl~ wefIt ~

to G~ vdJI!>fer X'lo ~)(,., IVr R/)Ct:t7~ I .J-..I,u Xl. ~ 2. awl )<,., =: 1. ;

Vh bJt)(s; 2

[

]

... '

[

,O ~ :::-

[

-f

l. '" [

-o

j

'::'

I

-/~ ]

(

j'lOfc. flu f j 20 ~ NOT/al/Jr/(~ ,

() -2. I /) 0 (^) -zI -z .M~et:W' Nt: ;t!ot - /cJpiu, ./ JJ,. fc:i,Ji;.; I

i

Ib :::J':> /1/)

17>< C .../

2D. Now let T be the matrix whose cohunns are aI, a3 and ~ (so T looks like A. if you .ake out A's second column).

\Vhat is Via now? That is, what are the solutions of Tx = 07

(W/UIt!!It CtdtJtta.t, "AI'I~h b" ", )<.l 3 x")

~J [TI ;] = f-~ ~

'11:1 )1,& ~'" N I P J (^) [

I 0 '-{

I

O

J

'1-,= - '1)<.., ~

'f () t'V 0 I z 0 ~ )(t = - 2)(... 9' "'n= -'1 () (J 0 0 () , I' X, c,. 1'~e. (~ X' nJ)

x,PD