Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Matlab problem solutions, Exercises of Matlab skills

Some Matlab problems solutions available

Typology: Exercises

2019/2020

Uploaded on 01/09/2020

toldo-sanal
toldo-sanal 🇹🇷

1 document

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
RA HM AD KUN CORO ADI
20160130159
Universitas Muhammadiyah Yogyakarta
Laporan
Praktikum Komputasi
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Partial preview of the text

Download Matlab problem solutions and more Exercises Matlab skills in PDF only on Docsity!

RAHMAD KUNCORO ADI

Universitas Muhammadiyah Yogyakarta

Laporan

Praktikum Komputasi

Persamaan Non – Linier Newton Method Newton’s method atau juga disebut Newton-Raphson adalah skema menentukan solusi numerik dari persamaan f(x) = 0, Metode ini diilustrasikan pada Gambar 1 dibawah. Gambar 1. Ilustrasi dari Newton-Raphson method Mencari solusi dengan memilih nilai untuk titik X1 sebagai estimasi pertama dari solusi persamaan tersebut. Estimasi kedua X2 diperoleh dengan mengambil garis singgung pada titik (X1, f(X1)), diperoleh titik perpotongan dari garis tanget dengan xaksi

Pembahasan Soal

Set 1

1. Find the root by executing the user-deined function Newton with

kmax = 20 and tol = 1e- 6

  • Mencari akar dengan maksimum pengulangan = 20 dan toleransi = 1e- 6 akarnewton.m = Script yang berisi fungsi untuk mencari akar newton berdasarkarkan rumus Newton Raphson dengan fungsi yang bisa kita tentukan sendiri. Fx1.m = Berisi fungsi untuk F(x) Fx2.m = Berisi fungsi untuk F’(x)

X^3 + 2x^2 + x + 2 = 0, [ - 3,-1 ] 3X^2 - x – 4 = 0, [ - 2,0 ]

e-(x-1)^ = 2.6 + cos ( x + 1 ), [-1,1] Sin x sinh x + 1 = 0, [3,4]

Set 2

2. The goal is to find two roots of

a. Graphically locate the roots.

b. To approximate each root, execute the user-deined function Newton

with default parameter values and x1 chosen as the closest integer on

the left of the root. If the intended root is not found this way, set x 1

to be the integer closest to the root on its right and re-execute Newton.

Discuss the results.

3. All three roots of the equation lie

inside the interval [ - 2, 2].

a. Graphically locate the roots, and decide whether each root is simple

or of higher multiplicity

b. Approximate the root with higher multiplicity by executing the user-

deined function NewtonMod and the simple root by executing

Newton. In both cases use default parameter values, and x1 chosen as

the closest integer on the left of the root.

Cos x cosh x = 1.3 in, [-4,4]

X^3 – 0.8 x^2 – 1.12 x – 0.2560 = 0, [-2,2]

RT = R 0 ( 1 + AT + BT^2 + CT^4 + DT^6 )

Y = w 0 x / 360LEI ( 7L^4 – 10 L^2 X^2 + 3 X^4 )