








Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This pdf contains question paper of above subject
Typology: Exams
1 / 14
This page cannot be seen from the preview
Don't miss anything!
B. Tech.- P-' Mid Semester Er:amination-
·1 I:\I E- 1: 50 hrs.
~ " 2 ) ) ) J uu cu
2. Jfu = log(x - +y- x-y -xy ). Th enshow that -=,- +-:,_- = --. - CT 0 1 x+y
(/ +v2 r .y X
3. '/( u(x,y) -= ~ - 2n·· -
. 1· I. I I a
ox (,)'_
. " + y X' I' d I I 1· C(lt. I') A d 1·. II -. 11 · - und r O^ , ,- , 1
x )' (x · y ) · ?( x.y ) ·
6. /:·valuate JI ydxdy over th e area hounded by th e ellipse.
Roll No ..........
B. Tech.- P' End Semester Examination-
Paper: First
Mathematics-I
MTH-SJOJ
M.M.-50 IT-Branclt TIME-3:00^ hrs.
vi: Prove that every convergent series is bounded and have unique limit.
At 1
.)('Test the convergence of the series ~ n((l 0 gi)" p>
A ~"' /_. ({/'!;if/ JJ
1 '. (x, yr,t(0, 0)
J, Test the continuity ofith efufic tion f(x,y) ={ (h[l.
4~\Jf rp(x ,y, z) = 0, t' b,,,~ ~~-~ t/>')}z )i,~ )z .-1. "·.
":t!... ".ii' az 8 ..\i"•itf ~ ; ....
\·"~' ' .,,.,,,, ~"<;.~. ,,-rit: -:t~ o/;
@1'race the curve ~
2
2 =;?--~~.. :-:~·-: ~ / I~
,i, ~. ..
_f· Find the first six ter11Js of th e.expans ions oftfze function e" log(l + y) in a
\
I '< ' 'I;);· • , < ;, • .,. : ' \ I.
ay or _senes a out t e or;gm. \1!-J~ 'r ,. • ,,:·.. •. i"
;7, The tem'Pe~ ture Tat ~ y-~) oint l ,z). ~··1~;~;l{=40('xyi. Find the ~-- ~ r,_ ~ ,... '= ,,..,. j/ """ ~ ""' ~ •.• ,. ,,.:''
highest temperatwe at the surfa ce ·ofa unit 'iph_e re x2 +y2 +z2 = 1.
. \•· .. ·, ., ~ ,.;. ' ,(.
J 2-x
8. Change the order of int~gf,;a tion in +~J ~ydydx and hence evaluate the same.
~,- ',";:f' , --..,~ "'
I
9.. Evaluate the integral f x
5
(1-.x3)1° dx
0
10. Evaluate Jf fxy2Sin(t+y+z)dxdyd;
subject to the condition x + y + z ::; n.
2
over all positive values of variables
'
! •
University Institute of Engineering and Technology
B.Tech. I Scm (CHE), (MTH -lOl)(Dec.-2016)
Time: 3 Hrs Max. Marks : 50
Note. Attempt all questions.
. ' Sei;tion-V • 2 each
~ ~!line.
V uetermine the radius of convergence for the powL ,:;rries
2
3 If
2
, y (^) 2. , x fi d. ifu
. u = x tan - - y tan r- , in - ·-. X .. ✓ - y ox8y
/F,ind the value of a if the vector (ax
2 y + yz )i + ( xl - xz
2 )i + (2xyz- 2x
2 l )k is
~ mct the directional derivative of¢ -=-5x
2
1 x at the po int P( I , I. I) in
h d
.. f h 1 · x - I v - 3 t e 1rect1on o t e me - = =- --- - = z.
6/1=1nd the work done in moving a particle in the force field ·•
V F:::3x
2 i+(2xz-y)J+zkalol)g the straight line from (0 ,0,0) to (2,1,3).
x· I· 2y· I 6
JS~how that the series t( - lf;' ' - ~ is convergent but not absolutel y.
x+ y 1- z ~ I with the help.of Liouvillc ' s Theorem.
1
n/4 ,. Section-ff _ 4 each
J· rind the larger of the two areas into which the circle x
2
~il'!d the centre of mass of the area of the cardioid r=a(l+cos0).
'
11 Tkhe convergence of the series r~' ~ =- x" (ii) f-- L2 .t.;'7. · - x"
~.,,' v' f-1 '1/n' (^) 1 I ,, , 7.10 .. \Jn t 4)
. ~xamine the convergence of ine,,,._
/-
yz xz yx a(u,v,w)
=- 2 , v = 2 ,w= 2 , find - ( ) ' X y Z O X,y,z
., a:i.u 0
2 u , a~u
x· --+ 2xy--+ 11 - -- -=n(n 1).
ox
2
2 +2x+l),prove that (x+I/ Y,, .; +(2n+l)(x+l)y,,_ 1 +(n
1 +4)y,, =0.
Hence using Maclaurin 's theorem expand yin ascending powers of x.
JV-Verify Stoke ' s theorem for the ve·ctor field F = (2x - y )i - yz
2 J--l=k, o ve r the
upper half surface of x2 + l + :1 °^0 I. bou~ded by its projection on the xy - pl a ne.
◄ a
the order of integration.
.
U•I. E- T., C · !::> • c-l ' l ' l · V ' l'-fll'Hvr-...
MI'D SEMESTER.. Ex A Ml NATION - 2ol
MTH- S \0 I
... 'B;51011cR- IT
Ti rn-e : I l tou:n.
O Te2.l J:lle Con v~ e hce of .H.e ...SenieA
o(. -ac-2.. ~
\ + ~ -+ I +-;,c_ 2- t I+ a3 -t - - - - ~ > o
2- ~{ cJ ~ 0in-'.c)2" .B,12-1 CvJuale
ll_- .,z-) d n -1,:,.. - c_ 2' n .-) <)(.a'H· 1 - Y11...cf .,, = O ·
O'f\J ~€Y1Ce .~-\J drf
0 )
'3. S-Rour ..±Ro.± ~e iuY\c+i'o~
. ~
...t)( ~ ~ f~,d) =p- (o 1 o)
-t (!( J ~) ::; / o'-1.+ 2-f- ~
. L (^) O ~, d) -_ Lo I^ o)
1..1> -no-:- CoY1b Y\O~ Qt Co I
a) Ju± 1 ..ls
~a,rl-iol' d-e:n i vo±iveJ ":f d(. £. -ta ex iSl:s al CO , a)
½.~l a.le 2..-- .,PJ10 i,e.. , CJ en '...>., .::-.ffi eo.J1 e m.. io .:)i_
. -~'mOa € neo~ f Unc-\i<h,_, · I
QI) ~ u =- .Y., i Y-1 Co?+ cf) ls- H,en.. ~;'f\d
cJ:- o '1..Lt o 1- 4. '2.... o '2.. lt.
d~2.. t _')...'d(o Oac.dc) -+. ~. O<)'.L
S • 'ffie }em..}e;i °-:1Ll-'Je T a+ Cl'Yl(} Jo i nl Co!, ~, 3}
~ S~re is (t.&-<> ~ T ~ Yoo 6C <} z;2- '#ind
Wie 'l.~ ut 1{!31~u~~. al: ffie ,t A w,::J'Qre_
~ ~ eJ\e '<).'._ + t~ z. = I
\
u: I. E. T I C .s. c--. \Yj. u.. < AN? l) R.
f\1 · M. -5o
C'3J
I
9 ' ~i..8c~ .,t.he on..,L1Y\u1__d O+ ➔ ?I-, o ::. ~ ·a..1·+~J2-
i.? c· L: ·.14 1> -t> ( 4) [ a ~r
0 1a1° ·
0
oJ: ~e 001 t". dJ,, LOA,k!,,t,11,.L<M , i::3]
lo · f,nJ J:Re YoJume ~ J:Re .l;c_2·& ?jen€J!aled.. J,y. · \
n
O,...v v-
"1evo.x.v1n9 ~e X\eo.. UY\d€Jt ~e ·cLOJve Y =- o:. ¼
o a '2(.1-·-t ~
Aech6h - 13 C:3]
~ Ybii~J ~Jlee'' A "ffieo:-m ~jf@a!-- 8<J)d21+(Y)J- 611-~JJJ]
~€)le C I~ ~e !oundetllo o1. ffte a:nea. enJo.sed
id Cwwv.. ~ • Ji, Clnd · d ~ ?f.?-. C 5]
[SJ
[SJ
tvJi(ale
i
Cs]
__UN...... 1 _V:...'E...,'R.__S1...1JJ.NSllZ'(!.T.lJ_QE ENGINEERIIYG AND
Mid-Semester /Jxaminution-
vY.'Evaluate (i) lim _Z/ Y_ ; x :;t O, y -:1, o. and (ii) Jim :-Y 2
y-+O y ➔ O
... 2 ,.. ·, ,,._"I
2
.l" 0 ...,,I) (JU (~ · 1, ( :· 11
.! X·t·y
0
i iJ0 2 c-'/ &i.: 'f', •
Y, The sum of thret: numbers is constant. Prove that 1 ·heir prodlict is
✓ E:xparnt the fon,:tion f(x ,y) _; / in powers of (x -1 ) and (y-1).
v°' ma ,1e C{lns i: as:Js m m'.t. n svcn t 1 ,i'~ ue sur are 1:.~ -1 .'?)i: = (m + 4)x 'N! t c-e
orthug01Hl.1 Lu the surfa..::e 4x ::y+z
3 ,,,4 at ~-h,;; point (1,-1, 2).
/show that di :·(gradr") ,·, ,1:'.(n+ l)r '' -
2 wht.!re r=Jx
2
2 and hence show
11'-'l l ..... 0 l ", :f (--:• -·.
r
';J( "' ,,,._ '7 If 1· ,- . ·•) ... 0 • :> l' !i ,n()I ')-· 0 t-i-,,.,.,,., ,,;-, .., _ tl1at (_ d((J a;, aJ O(p , ,. , .~, )'. - • ,.:~h, •,. .. , - ·- t i! , ,.u. • , ••\ J n • 7 ---- =: --- -- - •
C!-' <JZ iU 1.:Jx ~V
I. I
2
_.y. State and prove ~r's theoreni.
f · · -' ,
... UNIVERSITY _ ...____ ----..-...... INSTITUTE - _...., ____ OF ENG/NEERT!j(, ~ ANI!
TECHENOLOGY
x "o, y * o.
y · ➔ O • y ➔ O
. o o
1 u a
2
ma,-x.imum when th-ey are equal.
2
(1 :i(1gona1 to t.ne sur.i:&ct :1.c y -:- z ·. =l} :it t 1e r:ornt .. 1 :·- , .::. ,.
r----- -·
2 where r= - .j x; +y
2 +z
2 and hence shO\V
th~t (^) 6 1<.!.> = 0.
r
'"'/ lf r ) r ~ ... -· 0 th h ., ·tl· t OJ U({, z (!.. orp
·• · r. oyozdx &8y
I I
2 -l)Yn+2+(2n+l)xyn~l +(n
2 )y,, :.:0.