Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Maths-1 question paper UIET,Kanpur, Exams of Mathematics

This pdf contains question paper of above subject

Typology: Exams

2016/2017

Uploaded on 01/20/2022

succour
succour 🇮🇳

4.5

(12)

63 documents

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Roll
No
.
.......
. .
B.
Tech.-
P-'
Mid
Semester Er:amination-2017
Paper:
Finl
Mathematics
-I
IT
-
Branch
MTII-SlfJ/
·1
I:\I
E-
1:
50
hrs.
I.
Vind
th
e shortest dista
nc
e
fi'
om
th
e point
(1
, 2, - l) to t
he
sphe
re
~
" 2
) ) ) J uu cu
2.
Jfu =
log(x
-
+y-
x-y
-x
y ).
Th
enshowthat
-=,
- +-
:,_-
=
--.
-
CT
0 1 x+y
(/
+
v2
r .y X
3.
'/(
u(x
,y
)
-=
~ -
2n
·· -1
+ xj( ) +
g(-)
, whe
re
}.· o are orhitran' f
unc:ti
nns. prm·e
. .!J,\ ·- ) X
_v
,
..,
. .
. I . I I a 2 ' ' '
usin
g :
11
er s t 1eorem t
?lit
(x
-::;-
1 y
"'
11
(x. y) (x • ·'
)"
.
ox
(,_)'
4 If.
\"
+ y
X\'
I'
d I I
C(lt.
I') A d 1· . II
.
11
· -
und
r O ,
,-
,1
111
I
1e
va
ue o
--
. ' re
II
on ,,
un
c
/1
0
11
0
l'
x
)'
(x
· y ) ·
?(
x. y) ·
rela!ed! /{so. find
th
e relalionship.
5.
Tra
ce
th
e curve: y ' (a+ x) -x'
(3u
-x).
6.
/:·valuate
JI
ydxdy over
th
e area hounded by
th
e ellipse.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe

Partial preview of the text

Download Maths-1 question paper UIET,Kanpur and more Exams Mathematics in PDF only on Docsity!

Roll No. .........

B. Tech.- P-' Mid Semester Er:amination-

Paper: Finl

Mathematics -I

IT - Branch

MTII-SlfJ/

·1 I:\I E- 1: 50 hrs.

I. Vind th e shortest distanc e fi' om th e point (1 , 2, - l) to the sphere

~ " 2 ) ) ) J uu cu

2. Jfu = log(x - +y- x-y -xy ). Th enshow that -=,- +-:,_- = --. - CT 0 1 x+y

(/ +v2 r .y X

3. '/( u(x,y) -= ~ - 2n·· -

  • · + xj( ) +g(-) , where }.· o are orhitran ' func:ti nns. prm·e

. .!J,\ ·- ) X _v ,..,..

. I. I I a

usin g : 11 er s t 1eorem t ?lit (x -::;- 1 y "' )· 11 (x. y ) (x • ·' )".

ox (,)'_

4 If

. " + y X' I' d I I 1· C(lt. I') A d 1·. II -. 11 · - und r O^ , ,- , 1

111 I 1e va ue o --. ' re II on ,, un c /1 0 11 0 l'

x )' (x · y ) · ?( x.y ) ·

rela!ed! /{so. find th e relalionship.

5. Tra ce th e curve: y ' (a+x) - x' (3u - x).

6. /:·valuate JI ydxdy over th e area hounded by th e ellipse.

Roll No ..........

B. Tech.- P' End Semester Examination-

Paper: First

Mathematics-I

MTH-SJOJ

M.M.-50 IT-Branclt TIME-3:00^ hrs.

vi: Prove that every convergent series is bounded and have unique limit.

At 1

.)('Test the convergence of the series ~ n((l 0 gi)" p>

A ~"' /_. ({/'!;if/ JJ

1 '. (x, yr,t(0, 0)

J, Test the continuity ofith efufic tion f(x,y) ={ (h[l.

4~\Jf rp(x ,y, z) = 0, t' b,,,~ ~~-~ t/>')}z )i,~ )z .-1. "·.

":t!... ".ii' az 8 ..\i"•itf ~ ; ....

~ ' ' .._ "~A'.i>A &. t:"":~.i' .Y~;.

\·"~' ' .,,.,,,, ~"<;.~. ,,-rit: -:t~ o/;

@1'race the curve ~

2

y_

2 =;?--~~.. :-:~·-: ~ / I~

,i, ~. ..

_f· Find the first six ter11Js of th e.expans ions oftfze function e" log(l + y) in a

\

I '< ' 'I;);· • , < ;, • .,. : ' \ I.

T 1

. b h~ ,... '!¾ "~ -

ay or _senes a out t e or;gm. \1!-J~ 'r ,.,,:·.. •. i"

;7, The tem'Pe~ ture Tat ~ y-~) oint l ,z). ~··1~;~;l{=40('xyi. Find the ~-- ~ r,_ ~ ,... '= ,,..,. j/ """ ~ ""' ~ •.• ,. ,,.:''

highest temperatwe at the surfa ce ·ofa unit 'iph_e re x2 +y2 +z2 = 1.

. \•· .. ·, ., ~ ,.;. ' ,(.

J 2-x

8. Change the order of int~gf,;a tion in +~J ~ydydx and hence evaluate the same.

-~\ •.'' o)j

~,- ',";:f' , --..,~ "'

I

9.. Evaluate the integral f x

5

(1-.x3)1° dx

0

10. Evaluate Jf fxy2Sin(t+y+z)dxdyd;

subject to the condition x + y + z ::; n.

2

over all positive values of variables

'

I

! •

University Institute of Engineering and Technology

END SEMESTER EXAMINATION

B.Tech. I Scm (CHE), (MTH -lOl)(Dec.-2016)

Time: 3 Hrs Max. Marks : 50

Note. Attempt all questions.

. ' Sei;tion-V2 each

...,./1. Find the volume of the solid generated by the revolution of r = 2acos0 ab out the

~ ~!line.

V uetermine the radius of convergence for the powL ,:;rries

I+ -x + -x· + -,-,-, .,.. 1. ...

2

3J5J 3-5-7 -

3 If

2

, y (^) 2. , x fi d. ifu

. u = x tan - - y tan r- , in - ·-. X .. ✓ - y ox8y

/F,ind the value of a if the vector (ax

2 y + yz )i + ( xl - xz

2 )i + (2xyz- 2x

2 l )k is

  • _ ~oidal.

~ mct the directional derivative of¢ -=-5x

2

y - 5 y2 : + 2.5.:::

1 x at the po int P( I , I. I) in

h d

.. f h 1 · x - I v - 3 t e 1rect1on o t e me - = =- --- - = z.

6/1=1nd the work done in moving a particle in the force field ·•

V F:::3x

2 i+(2xz-y)J+zkalol)g the straight line from (0 ,0,0) to (2,1,3).

7. Discuss the maxima and minima of the function 11 = - -;· .!'.:'...{'-....

2y· I 6

JS~how that the series t( - lf;' ' - ~ is convergent but not absolutel y.

yE'v~luate the integral JJJ1/•Y" dxdydz taken over the positive octant such lh.1i

x+ y 1- z ~ I with the help.of Liouvillc ' s Theorem.

1

n/4 ,. Section-ff _ 4 each

rind the larger of the two areas into which the circle x

2

➔ l - ~64a : is divided by

the parabola l = 12ax. •.

~il'!d the centre of mass of the area of the cardioid r=a(l+cos0).

'

11 Tkhe convergence of the series r~' ~ =- x" (ii) f-- L2 .t.;'7. · - x"

~.,,' v' f-1 '1/n' (^) 1 I ,, , 7.10 .. \Jn t 4)

. ~xamine the convergence of ine,,,._

/-

yz xz yx a(u,v,w)

=- 2 , v = 2 ,w= 2 , find - ( ) ' X y Z O X,y,z

! 4. If-u be a homogeneous function of degree n, ·then prove that

., a:i.u 0

2 u , a~u

x· --+ 2xy--+ 11 - -- -=n(n 1).

ox

2

axay. a/

  1. If y=sinlog(x

2 +2x+l),prove that (x+I/ Y,, .; +(2n+l)(x+l)y,,_ 1 +(n

1 +4)y,, =0.

Hence using Maclaurin 's theorem expand yin ascending powers of x.

JV-Verify Stoke ' s theorem for the ve·ctor field F = (2x - y )i - yz

2 J--l=k, o ve r the

upper half surface of x2 + l + :1 °^0 I. bou~ded by its projection on the xy - pl a ne.

  1. Evaluate th e integ ral r· J; ·.I ( x~ + / )dxdy. Als o, evaluate th e same by changing

◄ a

the order of integration.

.

U•I. E- T., C · !::> • c-l ' l ' l · V ' l'-fll'Hvr-...

MI'D SEMESTER.. Ex A Ml NATION - 2ol

MTH- S \0 I

... 'B;51011cR- IT

Ti rn-e : I l tou:n.

O Te2.l J:lle Con v~ e hce of .H.e ...SenieA

M-M-

o(. -ac-2.. ~

\ + ~ -+ I +-;,c_ 2- t I+ a3 -t - - - - ~ > o

2- ~{ cJ ~ 0in-'.c)2" .B,12-1 CvJuale

ll_- .,z-) d n -1,:,.. - c_ 2' n .-) <)(.a'H· 1 - Y11...cf .,, = O ·

O'f\J ~€Y1Ce .~-\J drf

0 )

'3. S-Rour ..±Ro.± ~e iuY\c+i'o~

. ~

...t)( ~ ~ f~,d) =p- (o 1 o)

-t (!( J ~) ::; / o'-1.+ 2-f- ~

. L (^) O ~, d) -_ Lo I^ o)

1..1> -no-:- CoY1b Y\O~ Qt Co I

a) Ju± 1 ..ls

~a,rl-iol' d-e:n i vo±iveJ ":f d(. £. -ta ex iSl:s al CO , a)

½.~l a.le 2..-- .,PJ10 i,e.. , CJ en '...>., .::-.ffi eo.J1 e m.. io .:)i_

. -~'mOaneo~ f Unc-\i<h,_, · I

QI) ~ u =- .Y., i Y-1 Co?+ cf) ls- H,en.. ~;'f\d

cJ:- o '1..Lt o 1- 4. '2.... o '2.. lt.

d~2.. t _')...'d(o Oac.dc) -+. ~. O<)'.L

S • 'ffie }em..}e;i °-:1Ll-'Je T a+ Cl'Yl(} Jo i nl Co!, ~, 3}

~ S~re is (t.&-<> ~ T ~ Yoo 6C <} z;2- '#ind

Wie 'l.~ ut 1{!31~u~~. al: ffie ,t A w,::J'Qre_

~ ~ eJ\e '<).'._ + t~ z. = I

C"3J

\

u: I. E. T I C .s. c--. \Yj. u.. < AN? l) R.

f:NJ) 5EMGS TtR. [xRl'1INA"iION- 2.

'BR.~NC\i- JT

~v'l'TH- SIOI

f\1 · M. -5o

C'3J

I

  • I

9 ' ~i..8c~ .,t.he on..,L1Y\u1__d O+ ➔ ?I-, o ::. ~ ·a..1·+~J2-

i.? L: ·.14 1> -t> ( 4) [ a ~r

0 1a1° ·

'2- ~=o,

0

-:::o

oJ: ~e 001 t". dJ,, LOA,k!,,t,11,.L<M , i::3]

lo · f,nJ J:Re YoJume ~ J:Re .l;c_2·& ?jen€J!aled.. J,y. · \

n

O,...v v-

"1evo.x.v1n9 ~e X\eo.. UY\d€Jt ~e ·cLOJve Y =- o:. ¼

o a '2(.1-·-t ~

Aech6h - 13 C:3]

~ Ybii~J ~Jlee'' A "ffieo:-m ~jf@a!-- 8<J)d21+(Y)J- 611-~JJJ]

~€)le C I~ ~e !oundetllo o1. ffte a:nea. enJo.sed

id Cwwv.. ~ • Ji, Clnd · d ~ ?f.?-. C 5]

[SJ

[SJ

tvJi(ale

i

Cs]

__UN...... 1 _V:...'E...,'R.__S1...1JJ.NSllZ'(!.T.lJ_QE ENGINEERIIYG AND

l.EClf~NOLO(j.Y

Mid-Semester /Jxaminution-

Course : B. Tech. (f' Sem.)

Section: CHE.

TIME : 1: 30 hours

Subject :CALCULUS

Subject Code: J,fIH-SJ OI

MM: 30

vY.'Evaluate (i) lim _Z/ Y_ ; x :;t O, y -:1, o. and (ii) Jim :-Y 2

; x :t: O, y :.c 0.

¥ ➔ 0 X + y ,-.1 X + y

y-+O y ➔ O

... 2 ,.. ·, ,,._"I

2

.l" 0 ...,,I) (JU (~ · 1, ( :· 11

.! X·t·y

0

=Le cos¢nn<l x-y ::. ,:.,;e cos¢ tI-enshowthat-:---+-:··-= 4.9-·-- ·

i iJ0 2 c-'/ &i.: 'f',

Y, The sum of thret: numbers is constant. Prove that 1 ·heir prodlict is

iJiaximnm when they· are equal..

✓ E:xparnt the fon,:tion f(x ,y) _; / in powers of (x -1 ) and (y-1).

. • F. ' tt ➔ , 1 l f' 2 • 1·

v°' ma ,1e C{lns i: as:Js m m'.t. n svcn t 1 ,i'~ ue sur are 1:.~ -1 .'?)i: = (m + 4)x 'N! t c-e

orthug01Hl.1 Lu the surfa..::e 4x ::y+z

3 ,,,4 at ~-h,;; point (1,-1, 2).

/show that di :·(gradr") ,·, ,1:'.(n+ l)r '' -

2 wht.!re r=Jx

2

  • y2 +z

2 and hence show

t

11'-'l l ..... 0 l ", :f (--:• -·.

r

';J( "' ,,,._ '7 If 1· ,- . ·•) ... 0 • :> l' !i ,n()I ')-· 0 t-i-,,.,.,,., ,,;-, .., _ tl1at (_ d((J a;, aJ O(p , ,. , .~, )'. - • ,.:~h, •,. .. , - ·- t i! , ,.u. • , ••\ J n • 7 ---- =: --- -- - •

C!-' <JZ iU 1.:Jx ~V

I. I

/. If y;; + y. :;; co 2x 1 then .::how that 1>_·, --l)Y11+:1 +(2n ·f· lh"Yn+ l + (n

2

--n/)y, == 0.

_.y. State and prove ~r's theoreni.

f · · -' ,

... UNIVERSITY _ ...____ ----..-...... INSTITUTE - _...., ____ OF ENG/NEERT!j(, ~ ANI!

TECHENOLOGY

.'-'!id-Semester Examination-


Course : B. Tech. (f' Sem.)

SectiQ11: CHE.

, Subject :CALCULUS

Subject Code: MfH-SJOI

11ME: 1: 30 hours MM:

  1. Evaluate (i) Jim ..:..;J..; x .;co. y :;co. and (ii) tim .::.:.Y • 1

x "o, y * o.

<· ➔ OX. + V x ➔•) X2 ..:- yl

y · ➔ O • y ➔ O

. o o

1 u a

2

u i/ u

2. If x+ y=2e"cos¢and. x-y=2ze cos¢ then show that

  • o¢?· =4~ ax; ·
  1. The sum of three numbers is constant. Prove that their product 1s

ma,-x.imum when th-ey are equal.

4. Expai--id the function f(x,y) == ·yx in powers of (x-1) and (y-1).

5. Find the consl3.nts rn ar.d n such that the surfac <:' 11 ·1x

2

-2~\ S' :.~ (:n ~- 4)x will be

rtl

I 1 .f.". • 7. } , ( ' l "' '

(1 :i(1gona1 to t.ne sur.i:&ct :1.c y -:- z ·. =l} :it t 1e r:ornt .. 1 :·- , .::. ,.

r----- -·

  1. Sho ,v that div(gradrn)::::n(r:1-l)rn••

2 where r= - .j x; +y

2 +z

2 and hence shO\V

th~t (^) 6 1<.!.> = 0.

r

~ · c, d ·y··

'"'/ lf r ) r ~ ... -· 0 th h ., ·tl· t OJ U({, z (!.. orp

. -' ,.(x,y =0 anu ,n(,,-. .. )= ens 0.\ !.a·- ·--- -·--=- -- --.

·• · r. oyozdx &8y

I I

8. If y:; + y-:,; =1x, then show that (x

2 -l)Yn+2+(2n+l)xyn~l +(n

·-m

2 )y,, :.:0.

  1. State and prove Fubr'3 theorem.