













































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
linear differential,pde,ode,etc.
Typology: Lecture notes
1 / 53
This page cannot be seen from the preview
Don't miss anything!
58
A linear differential equation of n th order is that in which the dependent variable and its derivatives occur
only in the first degree and are not multiplied together. Thus, the general linear differential equation of the n th
order is of the form
1 2
P 1 1 P 2 2 P 1 P
n n n
n n n n^ n
d y d y d y dy y dx dx dx dx
X are functions of x only.
A linear differential equation with constant coefficients is of the form
1 2
1 1 2 2 1 X
n n n
n n n n^ n
d y d y d y dy a a a a y dx dx dx dx
where a 1 , a 2 , …… , a (^) n – 1, a (^) n are constants and X is either a constant or a function of x only.
First of all we discuss solution of linear differential equation with constant coefficients.
The part
d
dx
of the symbol
dy
dx
may be regarded as an operator such that when it operates on y , the result
is the derivative of y.
Similarly,
2 3
2 3
n
n
d d d
dx dx dx
L may be regarded as operators.
For brevity, we write
2 2 2
n n n
d d d
dx (^) dx dx
Thus, the symbol D is a differential operator or simply an operator.
Written in symbolic form, equation (1) becomes (D
n
n – 1
n – 2
or f (D) y = X
where f (D) =
1 2 D 1 D 1 D ....... 1 D
n n n a a an an
i.e., f (D) is a polynomial in D.
The operator D can be treated as an algebraic quantity.
i.e., D ( u + v ) = D u + D v
D (l u ) = l D u
D
p D
q u = D
p + q u
D
p D
q u = D
q D
p u
The polynomial f (D) can be factorised by ordinary rules of algebra and the factors may be written in any
order.
Theorem 1. If y = y 1 , y = y 2 , ……… , y = yn are n linearly independent solutions of the differential
equation
( D
_n
_n – 1
_n – 2
then u = c 1 y 1 + c 2 y 2 + ……… + cn yn is also its solution, where c 1 , c 2 , ……… , c (^) n are arbitrary constants.
Proof. Since y = y 1 , y = y 2 , ……, y = y (^) n are solution of equation ( i ).
1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2
1 2 1 2
n n n n n n n n
n n n n n n n n
y a y a y a y
y a y a y a y
y a y a y a y
\ + + + + = ü ï
…( ii )
Now, D
n u + a 1 D
n – 1 u + a 2 D
n – 2 u + …… + a (^) n u
= D
n ( c 1 y 1 + c 2 y 2 + …… + c (^) n y (^) n ) + a 1 D
n – 1 ( c 1 y 1 + c 2 y 2 + …… + cn yn )
n – 2 ( c 1 y 1 + c 2 y 2 + …… + c (^) n yn ) + … … … … + a (^) n ( c 1 y 1 + c 2 y 2 + … + cn yn )
= c 1 (D
n y 1 + a 1 D
n – 1 y 1 + a 2 D
n – 2 y 1 + … + an y 1 ) + c 2 (D
n y 2 + a 1 D
n – 1 y 2 + a 2 D
n – 2 yn + … + an y 2 )
n y (^) n + a 1 D
n – 1 y (^) n + a 2 D
n – 2 yn + … + an yn )
= c 1 (0) + c 2 (0) + … + cn (0) [ Q of ( ii )]
= 0
which shows that u = c 1 y 1 + c 2 y 2 + …… + cn yn is also the solution of equation ( i ).
Since this solution contains n arbitrary constants, it is the general or complete solution of equation ( i ).
Theorem 2. If y = u is the complete solution of the equation f ( D ) y = 0 and y = v is a particular solution
( containing no arbitrary constants ) of the equation f ( D ) y = X, then the complete solution of the equation
f ( D ) y = X is y = u + v.
Proof. Since y = u is the complete solution of the equation f (D) y = 0 …( i )
\ f (D) u = 0 …( ii )
Also, y = v is a particular solution of the equation f (D) y = X …( iii )
\ f (D) v = X …( iv )
Adding ( ii ) and ( iv ), we have f (D) ( u + v ) = X
Thus y = u + v satisfies the equation ( iii ), hence it is the complete solution (C.S.) because it contains n
arbitrary constants.
The part y = u is called the complementary function (C.F.) and the part y = v is called the particular
integral (P.I.) of the equation ( iii ). (P.T.U., Jan. 2010)
\ The complete solution of equation ( iii ), is y = C.F. + P.I.
Thus in order to solve the equation ( iii ), we first find the C.F. i.e., the C.S. of equation ( i ) and then the P.I.
i.e., a particular solution of equation ( iii ).
Consider the differential equation (D
n
n – 1
n – 2
Let y = e
mx be a solution of ( i ), then D y = m e
mx , D
2 y = m
2 e
mx , …… , D
n – 2 y = m
n – 2 e
mx
n – 1 y = m
n – 1 e
mx , D
n y = m
n e
mx
\ (D – m 1 ) y (^) = 1 1 or 1 1 1
m x dy m x c e m y c e dx
which is a linear equation and I.F. = e - m x^1
\ Its solution is y. 1 1 1.^12 1
m x m x m x e c e e dx c c x c
or y = ( c 1 x + c 2 ) 1
m x e
Thus, the complete solution of equation ( i ) is
y = ( c 1 x + c 2 ) 1 3 3
m x m x m x e + c e + L+ c en n
If, however, three roots of the A.E. are equal, say m 1 = m 2 = m 3 , then proceeding as above, the solution
becomes
y = (^) ( ) 1 4
2 1 2 3 4
m x m x m (^) nx c x + c x + c e + c e + L+ cn e
Case III. If two roots of the A.E. are imaginary,
Let m 1 = a + i b and m 2 = a – i b (Q in a real equation imaginary roots occur in conjugate pair)
The solution obtained in equation ( iv ) becomes
y =
1 2 3
a + b a - b
i x i x (^) m x m x c e c e c e cn e
= (^) ( 1 2 ) 3 3
a b - b
x i x i x m x mn x e c e c e c e cn e
= 1 ( cos sin ) 2 ( cos sin )
a é b + b + b - b ù ë û
x e c x i x c x i x + 3 3 n
m x m x c e + L+ cn e
By Euler's Theorem, cos sin é q ù = q + q ë û
i e i
= (^) ( 1 2 ) cos (^) ( 1 2 ) sin 3 3
a é (^) + b + - b ù+ + + ë û
L n
x m x^ m^ x e c c x i c c x c e cn e
= (^) ( C cos 1 b + C sin 2 b (^) ) + 3 3 + L+ n
ax m x m x e x x c e c en
[Taking c 1 + c 2 = C 1 , i ( c 1 – c 2 ) = C 2 ]
Case IV. If two pairs of imaginary roots be equal
Let m 1 = m 2 = a + i b and m 3 = m 4 = a – i b
Then by case II, the complete solution is
y = (^) ( 1 2 ) cos^ ( 3 4 ) sin^55 n
x m x m x e c x c x c x c x c e cn e
a é + b + + b ù+ + + ë û
ILLUSTRATIVE EXAMPLES
Example 1. Solve: 9y¢¢¢ + 3y¢¢ – 5y¢ + y = 0. (P.T.U., May 2008)
Sol. Symbolic form of given equation is
(9D
3
2
A.E. is 9D
3
2
or (D + 1) (3D – 1)
2 = 0
or D = – 1,
\ C.S is y = (^) ( )
1 3 1 2 3
x^ x c e c c x e
Example 2. Solve :.
4
4
d x 4x 0 dt
Sol. Given equation in symbolic form is (D
4
d
dt
Its A.E. is D
4
4
2
2 = 0
or (D
2
2
2 = 0 or (D
2
2
whence D =
and 2 2
i.e ., D = – 1 ± i and 1 ± i
Hence the C.S. is x = e
t ( c 3 cos t + c 4 sin t ).
Example 3. If ( )
2
2
d x g x a 0 dt b
dx 0 dt
= when t = 0 , show that
x = a + (a – a ) cos
g t b
. (P.T.U., May 2002)
Sol.
2
2
d x g x a dt b
Put x – a = y \
2
2
d x
dt
2
2
d y
dt
2
2
d y g y dt b
2 0
g m b
g
b
(–ve)
\ m =
g i b
± ; \ y = 1 cos^2 sin
g g c t c t b b
x – a = 1 cos 2 sin
g g c t c t b b
when x = a, t = 0; a – a = c 1
\ x – a = (a – a ) cos 2 sin
g g t c t b b
dx
dt
= ( ) sin 2 cos
g g g g a t c t b b b b
t = 0, 0
dx
dt
g c b
\ c 2 = 0
\ x – a = (a – a ) cos^
g t b
Hence, x = a + (a – a ) cos
g t b
TEST YOUR KNOWLEDGE
Solve the following differential equations :
1.
2
2
3 4 0
d y dy y dx dx
2
2
( ) 0
d y dy a b aby dx dx
3.
2
2
4 0
d y dy y dx dx
2
2
6 9 0
d x dx x dt dt
5.
3 2
3 2
3 3 0
d y d y dy y dx dx dx
3
3
0
d y y dx
Theorem 2. Prove that : (^) ò
X = X dx D
. (P.T.U., May 2002)
Proof. Let
= y
Operating both sides by D, we have
D X D or X D
æ ö ç ÷=^ = è ø
dy y dx Integrating both sides w.r.t. x
y = (^) òX dx ,
no arbitrary constant being added since y =
contains no arbitrary constant.
= X dx ò
Theorem 3. Prove that :
ò
(^1) ax ax X e X e dx D a
Proof. Let
y a
Operating on both sides by (D – a ), (D – a )
æ ö ç ÷=^ - è (^) - ø
a y a
or X = -. ., - =X
dy dy ay i e ay dx dx
which is a linear equation and I.F. =
a dx (^) ax e e
\ Its solution is ye
ax e dx , no constant being added
or y = X^
ò
ax ax e e dx
Hence,
=
ax ax e e dx a
Consider the differential equation, (D
n
n – 1
n – 2
It can be written as f (D) y = X, where f (D) = D
n
n – 1
n – 2
f (D)
Case I. When X = e
ax
Since D e
ax = a e
ax
2 e
ax = a
2 e
ax
n – 1 e
ax = a
n – 1 e
ax
n e
ax = a
n e
ax
\ f^ (D) e
ax = (D
n
n – 1
n – 2
ax
= ( a
n
n – 1
n – 2
ax
= f ( a ) e
ax .
Operating on both sides by
f (D)
( ) ( )
(D) ( ) or ( ) (D) (D) (D)
ax ax ax ax f e f a e e f a e f f f
Dividing both sides by f ( a ),
ax ax e e f a f
= , provided f ( a ) ¹ 0
Hence,
ax ax e e f f a
= , provided f ( a ) ¹ 0.
Case of failure. If f ( a ) = 0, the above method fails.
Since f ( a ) = 0, D = a is a root of A.E. f (D) = 0
\ D – a is a factor of f (D).
Let f (D) = (D – a ) f (D), where f ( a ) π 0 …( i )
Then
ax ax ax ax e e e e f a a a a
ax ax ax ax e e e e dx a a a
× = × f f ò^
[By Theorem 3]
f ò f
ax ax e dx x e a a
…( ii )
Differentiating both sides of ( i ) w.r.t. D, we have f ¢(D) = (D – a ) f¢ (D) + f (D)
Þ f ¢( a ) = f ( a )
\ From ( ii ), we have
ax ax e x e f f a
, provide f ¢( a ) ¹ 0
If f¢ ( a ) = 0, then
ax ax e x e f f a
, provided f ¢¢ ( a ) ¹ 0
and so on.
Example 1. Find the P.I. of ( D^3 – 3D^2 + 4 ) y = e 2x.
Sol. P.I. =
2 3 2
x e (^).
The denominator vanishes when D is replaced by 2. It is a case of failure.
We multiply the numerator by x and differentiate the denominator w.r.t. D.
2 2
x x e
It is again a case of failure. We multiply the numerator by x and differentiate the denominator w.r.t. D.
2 2 1 2 2 1 2 2
6D 6 6(2) 6 6
x x x x x e x e e (^).
Case II. When X = sin ( ax + b ) or cos ( ax + b ) (P.T.U., Dec. 2005)
D sin ( ax + b ) = a cos ( ax + b )
D^2 sin ( ax + b ) = (– a^2 ) sin ( ax + b )
D^3 sin ( ax + b ) = – a^3 cos ( ax + b )
D
4 sin ( ax + b ) = a
4 sin ( ax + b )
or (D
2 )
2 sin ( ax + b ) = (– a
2 )
2 sin ( ax + b )
.....................................................................
.....................................................................
In general, (D
2 )
n sin ( ax + b ) = (– a
2 )
n sin ( ax + b )
3 2
sin 3 D – D + 4D – 4
x
sin 3
x [Q Put D
2 = – 9]
sin 3
x = ( )
sin 3 5 1 - D
x
( )
2
sin 3 5 1 – D
x = ( )
sin 3 5 1 + 9
x [Q Putting D^2 = – 9]
= (^) ( )
sin 3 D sin 3 50
é + ù ë û
x x = (^) [ ]
sin 3 3 cos 3 50
x + x
Case III. When X = x m , m being a positive integer
Here P.I. =
m x f
Take out the lowest degree term from f (D) to make the first term unity (so that Binomial Theorem for a
negative index is applicable).
The remaining factor will be of the form 1 + f (D) or 1 – f (D)
Take this factor in the numerator. It takes the form [1 + f (D)]–1^ or [1 – f (D)] –
Expand it in ascending powers of D as far as the term containing D m , since D m^ + 1^ ( xm ) = 0, D m^ + 2^ ( xm ) = 0
and so on.
Operate on x m^ term by term.
Example 3. Find the P.I. of ( D^2 + 5D + 4 ) y = x^2 + 7x + 9.
Sol. P.I. = (^) ( ) ( )
2 2 (^2 )
x x x x
= (^) ( ) ( )
(^1 ) 2 2 2 1 5D D 2 1 5D D 5D D 2 1 7 9 1 7 9 4 4 4 4 4 4 4 4
é ù é^ ù æ ö æ ö æ ö ê + + ú + + = ê^ - + + + - ú + + ç ÷ ç ÷ ç ÷ ê è^ ø^ ú ê^ è^ ø^ è^ ø ú ë û (^) ë û
x x L x x
= (^) ( ) ( )
2 2 2 1 5D D 25 D 2 1 5D 21D 2 1 7 9 1 7 9 4 4 4 16 4 4 16
æ ö æ ö
ç -^ -^ +^ ÷ +^ +^ =^ ç -^ +^ ÷ +^ + è ø è ø
L x x L x x
= (^) ( ) ( ) ( )
é ù
ê ú ë û
x x x x x x
= (^) ( ) ( )
é ù æ ö
x x x x x.
Case IV. When X = eax^ V, where V is a function of x
Let u be a function of x , then by successive differentiation, we have
D ( e
ax u ) = e
ax D u + a e
ax u = e
ax (D + a ) u
D^2 ( e ax^ u ) = D [ e ax^ (D + a ) u ] = e ax^ (D 2 + a D) u + aeax^ (D + a ) u
= e
ax (D
2
2 ) u = e
ax (D + a )
2 u
Similarly, D^3 ( e ax^ u ) = e ax^ (D + a ) 3 u
In general, D
n ( e
ax u ) = e
ax (D + a )
n u
\ f (D) ( e ax^ u ) = eax^ f (D + a ) u
Operating on both sides by
f (D)
( )
ax f e u f
é ù ë û
ax e f a u f
é (^) + ù ë û
Þ e
ax u =
ax e f a u f
é (^) + ù ë û
Now, let f (D + a ) u = V, i.e ., u =
f (D + a )
…( i )
\ From ( i ), we have eax^ ( )
ax e f a f
or (^) ( )
ax ax e e f f a
Thus, e
ax which is on the right of
f (D)
may be taken out to the left provided D is replaced by D + a.
Example 4. Find the P.I. of ( D^2 – 4D + 3 ) y = ex^ cos 2x.
Sol. P.I. =
( )
2 2
cos 2 cos 2 D 4D (^3) D 1 4 (D 1) 3
x x e x e x
2 2
cos 2 cos 2 D 2D 2 2D
x x e x e x [Putting D
2 = – 2
2 ]
cos 2 cos 2 2 2 D 2 (2 D) (2 D)
x x e x e x
( )
(^2 )
cos 2 cos 2 (^2 4) D (^24 )
x x e x e x
= ( ) ( ) ( )
2 cos 2 D cos 2 2 cos 2 2 sin 2 cos 2 sin 2. 16 16 8
x x x e x x e x x e x x
Case V. When X is any other function of x****.
Resolve f (D) into linear factors.
Let f (D) = (D – m 1
) (D – m 2
) ……… (D – m n
Then P.I. = ( 1 )( 2 ) ( )
f (D)^ D^ m D^ m D^ mn
1 2
1 2 2
æ ö
ç ÷ è -^ -^ - ø
n
m m m
(By Partial fractions)
1 2
L (^) n m m mn
ò ò L^ ò
m x m x m x m x m xn m xn e e dx e e dx (^) ne e dx
See solved example 11 (art. 2.8)
é (^) - ù ê = ú ë -^ ò û
mx mx e e dx m
Step 3. Write the complementary function with the help of following table.
Roots of the A.E. C.F.
m x m x m x c e c e c e ……
m 1 , m 2 , m 3
m x c e + ……
m 1
= m 2
= m
= m 2
= m 3
= m C.F. = ( c 1
x + c 3
x^2 ) emx^ + 4 4
m x c e + ……
a x ( c 1 cos b x + c 2 sin b x )
(non-repeated) numbers (say) a ± i b.
twice, i.e ., a ± i b, a ± i b.
Step 4. Find the particular integral i.e ., P.I. = (^1 )
1 2
n n n a a an
X with the help of
following rules.
Functions Particular Integrals
ax e
f
Put D = a
ax e
f a
, provided f ( a ) ¹ 0.
In case f ( a ) = 0 then multiply by x and differentiate the denominator w.r.t. D and continue this process
untill denominator ceases to be zero on putting D = a.
( )
2
fD
sin ( ax + b ) or cos ( ax + b ) Put D 2 = –a^2
or cos ( ax + b )
2
sin ( ) ( )
f -
ax b a
or cos ( ax + b ) provided
2 f( - a ) ¹ 0
In case of failure apply to above mentioned rule of (1) case.
then operate on x m.
ax e f a
f (D)
. Resolve
f (D)
into partial fractions and operate
each partial fraction on X.
X X and X X D D
= = ò (^) - ò
ax ax dx e e dx a
Step 5. Then write the C.S. which is C.S. = C.F. + P.I.
or cos ( ax + b )
ILLUSTRATIVE EXAMPLES
Example 1. Solve : (D^2 + D + 1)y = (1 + sin x)^2_._ (P.T.U., May 2007)
Sol. (D
2
2
A.E. is D^2 + D + 1 = 0 \ D =
= - ± i
cos sin 2 2
x
e c x c x
P.I. = (^) ( )
2 2
1 sin D D 1
x = (^) { }
2 2
1 2 sin sin D D 1
x x
2
1 1 cos 2 1 2sin D D 1 2
ì - ü í +^ + ý
x x (^) = 2
2sin cos 2 D D 1 2 2
ì ü í +^ - ý
x x
2 2 2
. 2 sin cos 2 (^2) D D 1 D D 1 2 D D 1
x × (^) e + (^) x - x
(Put D = 0) (Put D^2 = - 1) (Put D 2 = - 4)
1 2 sin cos 2 2 D 2 D 3
× + × x - x
= (^) ( ) 2
2 cos cos 2 2 2 D 9
x x
2 cos cos 2 2 2 13
x x = (^) [ ]
2 cos 2 sin 2 3 cos 2 2 26
2 cos sin 2 cos 2 2 13 26
C.S. is y = (^2 1 )
cos sin 2 2
x
e c x c x
2 cos 2
sin 2 cos 2 13 26
Example 2. Solve : ( D – 2 )^2 y = 8 ( e 2x^ + sin 2x + x 2 ). (P.T.U., May 2009)
Sol. A.E. is (D – 2)^2 = 0 \ D = 2, 2
C.F. = ( c 1 + c 2 x ) e
2 x
P.I. = (^) ( )
2 2 2
8 sin 2 (D 2)
x é (^) e + x + x ù
2 2 2 2 2
8 sin 2 (D 2) (D 2) (D 2)
x e x x
é ù ê +^ + ú êë -^ -^ - úû
Now,
2 2
x e
Put D = 2; case of failure
x x e | Put D = 2. Case of failure
x x ×^ e =
2 2 2
x (^) x e
2
sin 2 (D 2)
x
2 2
sin 2 sin 2 D 4D 4 2 4D 4
x = x
[Q Putting D 2 = – 2 2 ]
2
9 6 4
x (^) x x x x e e e
Hence the C.S. is y = c 1 e
x
2
9 6 4
x (^) x x x x e e e.
Example 4. Solve :
4
4
d y
dx
- y = cos x cosh x. (P.T.U., May 2007, 2011)
Sol. Given equation in symbolic form is (D^4 – 1) y = cos x cosh x
A.E. is D^4 – 1 = 0 or (D 2 – 1) (D 2 + 1) = 0 \ D = ± 1, ± i
C.F. = c 1
ex^ + c 2
e –^ x^ + e^0 x^ ( c 3
cos x + c 4
sin x )
= c 1
e x^ + c 2
e –^ x^ + c 3
cos x + c 4
sin x
4 4
cos cosh cos D 1 D 1 2
x x e e x x x
æ - ö
= (^) ç ÷
4 4
cos cos (^2) D 1 D 1
x x e x e x
é (^) - ù ê + ú ë -^ - û
4 4
cos cos (^2) (D 1) 1 (D 1) 1
x x e x e x
é (^) - ù ê + ú êë +^ -^ -^ - úû
4 3 2 4 3 2
cos cos (^2) D 4D 6D 4D D 4D 6D 4D
x x e x e x
é (^) - ù ê + ú ë +^ +^ +^ -^ +^ - û
Put
2 D =– 1
( ) ( ) ( )
2 2
cos cos (^2 1) 4D 1 6 1 4 D ( 1) 4D( 1) 6( 1) 4D
x x e x e x
é ù ê (^) + ú ê (^) - + - + - + - - - + - - ú ë û
cos cos cos cosh cos 2 5 5 5 2 5
x x x x e^ e e x e x x x x
é ù æ^ + ö ê +^ ú = -^ ç ÷ = - ë -^ -^ û è^ ø
Hence the C.S. is y = c 1
ex^ + c 2
e –^ x^ + c 3
cos x + c 4
sin x –
cos cosh 5
x x.
Example 5. Solve:
2
2
d y 4 y dx
Sol. S.F. of given equation is
(D^2 + 4) y = x sin 2 x
A.E. is D
2
C.F. is e^0 .x^ (cos 2 x + i sin 2 x ) = cos 2 x + i sin 2 x
2
sin 2 D 4
x x
= Imaginary part of
2 2
i x x e
= Imaginary part of
( )
2 2
i x e x i +
= Imaginary part of
2 2
i x e x
= Imaginary part of
2 2
i x e x
i i
é ù ê ú êë úû
= Imaginary part of
2 1 D 1 4 D 4
i x e i x i
ê ú ë û
= Imaginary part of
2 1 D 1 4 D 4
i x i e i x
= Imaginary part of
2 1
4 D 4
i x i e i x
= Imaginary part of
( )
2 cos 2 sin 2
4 2 4
2
cos 2 sin 2 8 16
x x x + x
C.S. is y = C.F. + P.I.
2
1 cos 2^2 sin 2^ cos 2^ sin 2 8 16
x x c x + c x - x + x.
Example 6. Solve :
2 x 2
d y dy
- 2 y x e sin x dx dx
(P.T.U., Dec. 2003, Jan. 2010, Dec. 2010, May 2011, Dec. 2012)
Sol. Given equation in symbolic form is (D 2 – 2D + 1) y = x ex^ sin x
A.E. is D
2
2 = 0 \ D = 1, 1
C.F. = ( c 1 + c 2 x ) e x
2 2
. sin. sin (D 1) (D 1 1)
x x e x x = e x x
2
sin sin D D
x x e x x = e x x dx ò
Integrating by parts (^) = ( )
( cos ) 1( cos ) cos sin D D
x x e x x x dx e x x x
êë ò úû
= ( cos sin ) (^) { sin 1 .sin (^) } cos
x x e - x x + x dx = e é^ - x x - x dx - x ù ò (^) ë ò û
= (^) [ – sin – cos – cos (^) ] = – ( sin +2 cos )
x x e x x x x e x x x
Hence the C.S. is y = ( c 1 + c 2 x ) e
x
x ( x sin x + 2 cos x ).
Example 7. Solve :
2
2
d y dy 2 + y dx dx
x sin x. (P.T.U., May 2006, Dec. 2011)
Sol.
2
2
d y dy y dx dx
S.F. is (D 2 – 2D + 1) y = e x^ sin x
A.E. is m^2 – 2 m + 1 = 0 i.e., m = 1, 1.
C.F. is ( c 1
x ) e x
\ Four values of m are
± i - ± i
1 1 2 2 1 2 3 4
cos sin cos sin 2 2 2 2
æ ö - æ ö
ç +^ ÷ +^ ç + ÷ è ø è ø
x x e c x c x e c x c x
4 2
cos D D 1 2
ç ÷
x
e x
4 2
cos 1 1 2 D D 1 2 2
ç ÷ æ ö æ ö è^ ø ç -^ ÷ +^ ç -^ ÷ + è ø è ø
x
e x [Using art. 2.7 Case IV]
4 3 2
cos (^5 3 21 ) D 2D D D 2 2 16
ç ÷
x
e x
Put D^2 =
x
e
cos 2
x
æ ö
ç ÷ è ø
x
e
cos 2
x
æ ö
ç ÷ è ø
i.e., case of failure
3 2
cos (^3 ) 4D 6D 5D 2
x x e x
ç ÷ è ø
Put D^2 =
cos (^9 3 ) 3D 5D 2 2
ç ÷ è ø
x x e x
2
cos cos 2D (^3 2) 4D 9 2
ç ÷
x x
x e x x e x
2 2
cos. 2. sin 3cos 12 2 12 2 2 2
x x x e x e x x x
3 sin 3cos 12 2 2
x
x e x x
C.S. is y = C.F. + P.I.
y = (^2 1 2 23 )
cos sin cos sin 2 2 2 2
æ ö - æ ö
ç +^ ÷ +^ ç + ÷ è ø è ø
x x
e c x c x e c x c x
. 3 sin 3cos 12 2 2
é ù
x
x e x x.
Example 9. Solve : (D
2
- 6D + 13) y = 8e
3x sin 4x + 2
x
. (P.T.U., Dec. 2005)
Sol. A.E. is D
2
= 3 ± 2 i
C.F. = e
3 x ( c 1 cos 2 x + c 2 sin 2 x )
2
(8 e
3 x sin 4 x + 2
x )
2
e
3 x sin 4 x +
2
x
= 8 e
3 x^1
D 3 6 D 3 13
2 b +^ g -^ b +^ g +
sin 4 x +
2
e
log 2 x
= 8 e
3 x^1
D 4
2
sin 4 x +
2
e
x log 2
(Put D
2 = – 16) (Put D = log 2)
= 8 e
3 x .
sin 4 x + ( )
2
log 2 - 6 log 2 + 13
e
x log 2
3 e
x
sin 4 x +
2 blog g -^ log +
x
C.S. is y = e
3 x ( c 1 cos 2 x + c 2 sin 2 x ) –
3 2
e x
x x sin log log
b g -^ +
Example 10. Solve : (D
_2
–x sec x. (P.T.U., Dec. 2002)
Sol. A.E. is D
2
i = – 1 ± i
C.F. = e