Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mathematics0010001111, Lecture notes of Mathematics

linear differential,pde,ode,etc.

Typology: Lecture notes

2019/2020

Uploaded on 11/21/2021

chhavi-garg7
chhavi-garg7 🇮🇳

1 document

1 / 53

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
58
2
Linear Ordinary Differential
Equations of Second and Higher Order
2.1. DEFINITIONS
A linear differential equation of nth order is that in which the dependent variable and its derivatives occur
only in the first degree and are not multiplied together. Thus, the general linear differential equation of the nth
order is of the form
12
12 1
12
PP PP
nn n
nn
nn n
dy d y d y dy y
dx
dx dx dx
--
-
--
+++++
L= X, where P1, P2, ……, Pn – 1 , Pn and
X are functions of x only.
A linear differential equation with constant coefficients is of the form
12
12 1
12 X
nn n
nn
nn n
dy d y d y dy
aa aay
dx
dx dx dx
--
-
--
++ +++=
L…(1)
where a1, a2, …… , an – 1, an are constants and X is either a constant or a function of x only.
First of all we discuss solution of linear differential equation with constant coefficients.
2.2. THE OPERATOR D
The part d
dx of the symbol dy
dx may be regarded as an operator such that when it operates on y, the result
is the derivative of y.
Similarly,
23
23
,,,
n
n
dd d
dx dx dx
L may be regarded as operators.
For brevity, we write
2
2
2
D, D , , D
nn
n
dd d
dx dx dx
ºº ºL
Thus, the symbol D is a differential operator or simply an operator.
Written in symbolic form, equation (1) becomes (Dn + a1 Dn – 1 + a2 Dn – 2 + …… + an – 1 D + an) y = X
or f (D) y = X
where f (D) = 12
11 1
D D D ....... D
nn n nn
aa aa
-- -
+++++
i.e., f (D) is a polynomial in D.
The operator D can be treated as an algebraic quantity.
i.e., D (u + v)= Du + Dv
D (lu)= l Du
Dp Dq u= Dp + q u
Dp Dq u= Dq Dp u
The polynomial f (D) can be factorised by ordinary rules of algebra and the factors may be written in any
order.
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35

Partial preview of the text

Download Mathematics0010001111 and more Lecture notes Mathematics in PDF only on Docsity!

58

Linear Ordinary Differential

Equations of Second and Higher Order

2.1. DEFINITIONS

A linear differential equation of n th order is that in which the dependent variable and its derivatives occur

only in the first degree and are not multiplied together. Thus, the general linear differential equation of the n th

order is of the form

1 2

P 1 1 P 2 2 P 1 P

n n n

n n n n^ n

d y d y d y dy y dx dx dx dx

  • (^) - + (^) - + L + (^) - + = X, where P 1 , P 2 , ……, P n – 1 , P n and

X are functions of x only.

A linear differential equation with constant coefficients is of the form

1 2

1 1 2 2 1 X

n n n

n n n n^ n

d y d y d y dy a a a a y dx dx dx dx

  • (^) - + (^) - + L + (^) - + = …(1)

where a 1 , a 2 , …… , a (^) n – 1, a (^) n are constants and X is either a constant or a function of x only.

First of all we discuss solution of linear differential equation with constant coefficients.

2.2. THE OPERATOR D

The part

d

dx

of the symbol

dy

dx

may be regarded as an operator such that when it operates on y , the result

is the derivative of y.

Similarly,

2 3

2 3

n

n

d d d

dx dx dx

L may be regarded as operators.

For brevity, we write

2 2 2

D, D , , D

n n n

d d d

dx (^) dx dx

º º L º

Thus, the symbol D is a differential operator or simply an operator.

Written in symbolic form, equation (1) becomes (D

n

  • a 1 D

n – 1

  • a 2 D

n – 2

  • …… + a (^) n – 1 D + a (^) n ) y = X

or f (D) y = X

where f (D) =

1 2 D 1 D 1 D ....... 1 D

n n n a a an an

i.e., f (D) is a polynomial in D.

The operator D can be treated as an algebraic quantity.

i.e., D ( u + v ) = D u + D v

D (l u ) = l D u

D

p D

q u = D

p + q u

D

p D

q u = D

q D

p u

The polynomial f (D) can be factorised by ordinary rules of algebra and the factors may be written in any

order.

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 59

2.3. THEOREMS

Theorem 1. If y = y 1 , y = y 2 , ……… , y = yn are n linearly independent solutions of the differential

equation

( D

_n

  • a 1 D_

_n – 1

  • a 2 D_

_n – 2

  • …… + an_ ) y = 0 …( i )

then u = c 1 y 1 + c 2 y 2 + ……… + cn yn is also its solution, where c 1 , c 2 , ……… , c (^) n are arbitrary constants.

Proof. Since y = y 1 , y = y 2 , ……, y = y (^) n are solution of equation ( i ).

1 2 1 1 1 2 1 1 1 2 2 1 2 2 2 2

1 2 1 2

D D D 0

D D D 0

D D D 0

n n n n n n n n

n n n n n n n n

y a y a y a y

y a y a y a y

y a y a y a y

\ + + + + = ü ï

        • = ï ï ý ï ï
        • = ï þ

L

L

L L L L L

L L L L L

L

…( ii )

Now, D

n u + a 1 D

n – 1 u + a 2 D

n – 2 u + …… + a (^) n u

= D

n ( c 1 y 1 + c 2 y 2 + …… + c (^) n y (^) n ) + a 1 D

n – 1 ( c 1 y 1 + c 2 y 2 + …… + cn yn )

  • a 2 D

n – 2 ( c 1 y 1 + c 2 y 2 + …… + c (^) n yn ) + … … … … + a (^) n ( c 1 y 1 + c 2 y 2 + … + cn yn )

= c 1 (D

n y 1 + a 1 D

n – 1 y 1 + a 2 D

n – 2 y 1 + … + an y 1 ) + c 2 (D

n y 2 + a 1 D

n – 1 y 2 + a 2 D

n – 2 yn + … + an y 2 )

  • … … … … + c (^) n (D

n y (^) n + a 1 D

n – 1 y (^) n + a 2 D

n – 2 yn + … + an yn )

= c 1 (0) + c 2 (0) + … + cn (0) [ Q of ( ii )]

= 0

which shows that u = c 1 y 1 + c 2 y 2 + …… + cn yn is also the solution of equation ( i ).

Since this solution contains n arbitrary constants, it is the general or complete solution of equation ( i ).

Theorem 2. If y = u is the complete solution of the equation f ( D ) y = 0 and y = v is a particular solution

( containing no arbitrary constants ) of the equation f ( D ) y = X, then the complete solution of the equation

f ( D ) y = X is y = u + v.

Proof. Since y = u is the complete solution of the equation f (D) y = 0 …( i )

\ f (D) u = 0 …( ii )

Also, y = v is a particular solution of the equation f (D) y = X …( iii )

\ f (D) v = X …( iv )

Adding ( ii ) and ( iv ), we have f (D) ( u + v ) = X

Thus y = u + v satisfies the equation ( iii ), hence it is the complete solution (C.S.) because it contains n

arbitrary constants.

The part y = u is called the complementary function (C.F.) and the part y = v is called the particular

integral (P.I.) of the equation ( iii ). (P.T.U., Jan. 2010)

\ The complete solution of equation ( iii ), is y = C.F. + P.I.

Thus in order to solve the equation ( iii ), we first find the C.F. i.e., the C.S. of equation ( i ) and then the P.I.

i.e., a particular solution of equation ( iii ).

2.4. AUXILIARY EQUATION (A.E.)

Consider the differential equation (D

n

  • a 1 D

n – 1

  • a 2 D

n – 2

  • ……… + a (^) n ) y = 0 …( i )

Let y = e

mx be a solution of ( i ), then D y = m e

mx , D

2 y = m

2 e

mx , …… , D

n – 2 y = m

n – 2 e

mx

D

n – 1 y = m

n – 1 e

mx , D

n y = m

n e

mx

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 61

\ (D – m 1 ) y (^) = 1 1 or 1 1 1

m x dy m x c e m y c e dx

which is a linear equation and I.F. = e - m x^1

\ Its solution is y. 1 1 1.^12 1

m x m x m x e c e e dx c c x c

    • = + = + ò

or y = ( c 1 x + c 2 ) 1

m x e

Thus, the complete solution of equation ( i ) is

y = ( c 1 x + c 2 ) 1 3 3

m x m x m x e + c e + L+ c en n

If, however, three roots of the A.E. are equal, say m 1 = m 2 = m 3 , then proceeding as above, the solution

becomes

y = (^) ( ) 1 4

2 1 2 3 4

m x m x m (^) nx c x + c x + c e + c e + L+ cn e

Case III. If two roots of the A.E. are imaginary,

Let m 1 = a + i b and m 2 = a – i b (Q in a real equation imaginary roots occur in conjugate pair)

The solution obtained in equation ( iv ) becomes

y =

1 2 3

a + b a - b

      • L + n

i x i x (^) m x m x c e c e c e cn e

= (^) ( 1 2 ) 3 3

a b - b

      • L^ +

x i x i x m x mn x e c e c e c e cn e

= 1 ( cos sin ) 2 ( cos sin )

a é b + b + b - b ù ë û

x e c x i x c x i x + 3 3 n

m x m x c e + L+ cn e

By Euler's Theorem, cos sin é q ù = q + q ë û

Q

i e i

= (^) ( 1 2 ) cos (^) ( 1 2 ) sin 3 3

a é (^) + b + - b ù+ + + ë û

L n

x m x^ m^ x e c c x i c c x c e cn e

= (^) ( C cos 1 b + C sin 2 b (^) ) + 3 3 + L+ n

ax m x m x e x x c e c en

[Taking c 1 + c 2 = C 1 , i ( c 1 – c 2 ) = C 2 ]

Case IV. If two pairs of imaginary roots be equal

Let m 1 = m 2 = a + i b and m 3 = m 4 = a – i b

Then by case II, the complete solution is

y = (^) ( 1 2 ) cos^ ( 3 4 ) sin^55 n

x m x m x e c x c x c x c x c e cn e

a é + b + + b ù+ + + ë û

L.

ILLUSTRATIVE EXAMPLES

Example 1. Solve: 9y¢¢¢ + 3y¢¢ – 5y¢ + y = 0. (P.T.U., May 2008)

Sol. Symbolic form of given equation is

(9D

3

  • 3D

2

  • 5D + 1) y = 0

A.E. is 9D

3

  • 3D

2

  • 5D + 1 = 0

or (D + 1) (3D – 1)

2 = 0

or D = – 1,

\ C.S is y = (^) ( )

1 3 1 2 3

x^ x c e c c x e

    • +.

Example 2. Solve :.

4

4

d x 4x 0 dt

Sol. Given equation in symbolic form is (D

4

    1. x = 0, where D =

d

dt

62 A TEXTBOOK OF ENGINEERING MATHEMATICS

Its A.E. is D

4

  • 4 = 0 or (D

4

  • 4D

2

    1. – 4D

2 = 0

or (D

2

2

  • (2D)

2 = 0 or (D

2

  • 2D + 2) (D

2

  • 2D + 2) = 0

whence D =

and 2 2

i.e ., D = – 1 ± i and 1 ± i

Hence the C.S. is x = e

  • t ( c 1 cos t + c 2 sin t ) + e

t ( c 3 cos t + c 4 sin t ).

Example 3. If ( )

2

2

d x g x a 0 dt b

    • = ; ( a > 0 , b > 0 , g > 0 ) and x = a,

dx 0 dt

= when t = 0 , show that

x = a + (a – a ) cos

g t b

. (P.T.U., May 2002)

Sol.

2

2

d x g x a dt b

Put xa = y \

2

2

d x

dt

2

2

d y

dt

\

2

2

d y g y dt b

  • = 0 A.E. is

2 0

g m b

  • = \ m^2 = –

g

b

(–ve)

\ m =

g i b

± ; \ y = 1 cos^2 sin

g g c t c t b b

xa = 1 cos 2 sin

g g c t c t b b

when x = a, t = 0; a – a = c 1

\ xa = (a – a ) cos 2 sin

g g t c t b b

\

dx

dt

= ( ) sin 2 cos

g g g g a t c t b b b b

  • a - +

t = 0, 0

dx

dt

= \ 0 = 2

g c b

\ c 2 = 0

\ xa = (a – a ) cos^

g t b

Hence, x = a + (a – a ) cos

g t b

TEST YOUR KNOWLEDGE

Solve the following differential equations :

1.

2

2

3 4 0

d y dy y dx dx

    • = 2.

2

2

( ) 0

d y dy a b aby dx dx

      • =

3.

2

2

4 0

d y dy y dx dx

    • = (^) 4.

2

2

6 9 0

d x dx x dt dt

    • =

5.

3 2

3 2

3 3 0

d y d y dy y dx dx dx

      • = (^) 6.

3

3

0

d y y dx

  • = (P.T.U., May 2012)

64 A TEXTBOOK OF ENGINEERING MATHEMATICS

Theorem 2. Prove that : (^) ò

X = X dx D

. (P.T.U., May 2002)

Proof. Let

X

D

= y

Operating both sides by D, we have

D X D or X D

æ ö ç ÷=^ = è ø

dy y dx Integrating both sides w.r.t. x

y = (^) òX dx ,

no arbitrary constant being added since y =

X

D

contains no arbitrary constant.

\

X

D

= X dx ò

Theorem 3. Prove that :

=

ò

(^1) ax ax X e X e dx D a

Proof. Let

X

D

y a

Operating on both sides by (D – a ), (D – a )

X (D )

D

æ ö ç ÷=^ - è (^) - ø

a y a

or X = -. ., - =X

dy dy ay i e ay dx dx

which is a linear equation and I.F. =

  • (^) - ò (^) =

a dx (^) ax e e

\ Its solution is ye

  • ax = X^ - ò

ax e dx , no constant being added

or y = X^

ò

ax ax e e dx

Hence,

X X

D

=

  • ò

ax ax e e dx a

2.7. RULES FOR FINDING THE PARTICULAR INTEGRAL (P.T.U., Dec. 2004)

Consider the differential equation, (D

n

  • a 1 D

n – 1

  • a 2 D

n – 2

  • … + a (^) n – 1 D + an ) y = X

It can be written as f (D) y = X, where f (D) = D

n

  • a 1 D

n – 1

  • a 2 D

n – 2

  • … + a (^) n – 1 D + a (^) n

\ P.I. =

X

f (D)

Case I. When X = e

ax

Since D e

ax = a e

ax

D

2 e

ax = a

2 e

ax

D

n – 1 e

ax = a

n – 1 e

ax

D

n e

ax = a

n e

ax

\ f^ (D) e

ax = (D

n

  • a 1 D

n – 1

  • a 2 D

n – 2

  • L + a (^) n – 1 D + a (^) n ) e

ax

= ( a

n

  • a 1 a

n – 1

  • a 2 a

n – 2

  • L + a (^) n – 1 a + an ) e

ax

= f ( a ) e

ax .

Operating on both sides by

f (D)

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 65

( ) ( )

(D) ( ) or ( ) (D) (D) (D)

ax ax ax ax f e f a e e f a e f f f

Dividing both sides by f ( a ),

( ) (D)

ax ax e e f a f

= , provided f ( a ) ¹ 0

Hence,

(D) ( )

ax ax e e f f a

= , provided f ( a ) ¹ 0.

Case of failure. If f ( a ) = 0, the above method fails.

Since f ( a ) = 0, D = a is a root of A.E. f (D) = 0

\ D – a is a factor of f (D).

Let f (D) = (D – a ) f (D), where f ( a ) π 0 …( i )

Then

(D) (D ) (D) D (D) D ( )

= = = ×

  • f - f - f

ax ax ax ax e e e e f a a a a

( ) D – ( )

ax ax ax ax e e e e dx a a a

× = × f f ò^

[By Theorem 3]

= ×

f ò f

ax ax e dx x e a a

…( ii )

Differentiating both sides of ( i ) w.r.t. D, we have f ¢(D) = (D – a ) f¢ (D) + f (D)

Þ f ¢( a ) = f ( a )

\ From ( ii ), we have

(D) ( )

= ×

ax ax e x e f f a

, provide f ¢( a ) ¹ 0

If ( a ) = 0, then

(D) ( )

ax ax e x e f f a

= ×

, provided f ¢¢ ( a ) ¹ 0

and so on.

Example 1. Find the P.I. of ( D^3 – 3D^2 + 4 ) y = e 2x.

Sol. P.I. =

2 3 2

D - 3D + 4

x e (^).

The denominator vanishes when D is replaced by 2. It is a case of failure.

We multiply the numerator by x and differentiate the denominator w.r.t. D.

\ P.I.=

2 2

3 D 6D

×

x x e

It is again a case of failure. We multiply the numerator by x and differentiate the denominator w.r.t. D.

\ P.I. =

2 2 1 2 2 1 2 2

6D 6 6(2) 6 6

× = × =

x x x x x e x e e (^).

Case II. When X = sin ( ax + b ) or cos ( ax + b ) (P.T.U., Dec. 2005)

D sin ( ax + b ) = a cos ( ax + b )

D^2 sin ( ax + b ) = (– a^2 ) sin ( ax + b )

D^3 sin ( ax + b ) = – a^3 cos ( ax + b )

D

4 sin ( ax + b ) = a

4 sin ( ax + b )

or (D

2 )

2 sin ( ax + b ) = (– a

2 )

2 sin ( ax + b )

.....................................................................

.....................................................................

In general, (D

2 )

n sin ( ax + b ) = (– a

2 )

n sin ( ax + b )

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 67

P.I. =

3 2

sin 3 D – D + 4D – 4

x

sin 3

  • 9D + 9 + 4D – 4

x [Q Put D

2 = – 9]

sin 3

  • 5D + 5

x = ( )

sin 3 5 1 - D

x

( )

2

1 D

sin 3 5 1 – D

x = ( )

1 D

sin 3 5 1 + 9

x [Q Putting D^2 = – 9]

= (^) ( )

sin 3 D sin 3 50

é + ù ë û

x x = (^) [ ]

sin 3 3 cos 3 50

x + x

Case III. When X = x m , m being a positive integer

Here P.I. =

(D)

m x f

Take out the lowest degree term from f (D) to make the first term unity (so that Binomial Theorem for a

negative index is applicable).

The remaining factor will be of the form 1 + f (D) or 1 – f (D)

Take this factor in the numerator. It takes the form [1 + f (D)]–1^ or [1 – f (D)] –

Expand it in ascending powers of D as far as the term containing D m , since D m^ + 1^ ( xm ) = 0, D m^ + 2^ ( xm ) = 0

and so on.

Operate on x m^ term by term.

Example 3. Find the P.I. of ( D^2 + 5D + 4 ) y = x^2 + 7x + 9.

Sol. P.I. = (^) ( ) ( )

2 2 (^2 )

D 5D 4 5D D

    • æ^ ö ç +^ + ÷ è ø

x x x x

= (^) ( ) ( )

(^1 ) 2 2 2 1 5D D 2 1 5D D 5D D 2 1 7 9 1 7 9 4 4 4 4 4 4 4 4

é ù é^ ù æ ö æ ö æ ö ê + + ú + + = ê^ - + + + - ú + + ç ÷ ç ÷ ç ÷ ê è^ ø^ ú ê^ è^ ø^ è^ ø ú ë û (^) ë û

x x L x x

= (^) ( ) ( )

2 2 2 1 5D D 25 D 2 1 5D 21D 2 1 7 9 1 7 9 4 4 4 16 4 4 16

æ ö æ ö

ç -^ -^ +^ ÷ +^ +^ =^ ç -^ +^ ÷ +^ + è ø è ø

L x x L x x

= (^) ( ) ( ) ( )

7 9 D 7 9 D 7 9

é ù

ê ú ë û

x x x x x x

= (^) ( ) ( )

é ù æ ö

          • = (^) ç + + ÷ ê ú (^) è ø ë û

x x x x x.

Case IV. When X = eax^ V, where V is a function of x

Let u be a function of x , then by successive differentiation, we have

D ( e

ax u ) = e

ax D u + a e

ax u = e

ax (D + a ) u

D^2 ( e ax^ u ) = D [ e ax^ (D + a ) u ] = e ax^ (D 2 + a D) u + aeax^ (D + a ) u

= e

ax (D

2

  • 2 a D + a

2 ) u = e

ax (D + a )

2 u

Similarly, D^3 ( e ax^ u ) = e ax^ (D + a ) 3 u

68 A TEXTBOOK OF ENGINEERING MATHEMATICS

In general, D

n ( e

ax u ) = e

ax (D + a )

n u

\ f (D) ( e ax^ u ) = eax^ f (D + a ) u

Operating on both sides by

f (D)

( )

(D)

(D)

ax f e u f

é ù ë û

(D )

(D)

ax e f a u f

é (^) + ù ë û

Þ e

ax u =

(D )

(D)

ax e f a u f

é (^) + ù ë û

Now, let f (D + a ) u = V, i.e ., u =

V

f (D + a )

…( i )

\ From ( i ), we have eax^ ( )

V V

(D ) (D)

ax e f a f

or (^) ( )

V V

(D) (D )

ax ax e e f f a

Thus, e

ax which is on the right of

f (D)

may be taken out to the left provided D is replaced by D + a.

Example 4. Find the P.I. of ( D^2 – 4D + 3 ) y = ex^ cos 2x.

Sol. P.I. =

( )

2 2

cos 2 cos 2 D 4D (^3) D 1 4 (D 1) 3

x x e x e x

2 2

cos 2 cos 2 D 2D 2 2D

x x e x e x [Putting D

2 = – 2

2 ]

1 1 1 2 D

cos 2 cos 2 2 2 D 2 (2 D) (2 D)

x x e x e x

( )

(^2 )

1 2 D 1 2 D

cos 2 cos 2 (^2 4) D (^24 )

x x e x e x

= ( ) ( ) ( )

2 cos 2 D cos 2 2 cos 2 2 sin 2 cos 2 sin 2. 16 16 8

x x x e x x e x x e x x

Case V. When X is any other function of x****.

Resolve f (D) into linear factors.

Let f (D) = (D – m 1

) (D – m 2

) ……… (D – m n

) X

Then P.I. = ( 1 )( 2 ) ( )

X X

f (D)^ D^ m D^ m D^ mn

- - L -

1 2

1 2 2

A A A

X

D D D

æ ö

ç ÷ è -^ -^ - ø

L

n

m m m

(By Partial fractions)

1 2

A X A X A X

D D D

L (^) n m m mn

= A 1 1 X^1 A^22 X^2 A^ X^

ò ò L^ ò

m x m x m x m x m xn m xn e e dx e e dx (^) ne e dx

See solved example 11 (art. 2.8)

X X

D

é (^) - ù ê = ú ë -^ ò û

Q

mx mx e e dx m

70 A TEXTBOOK OF ENGINEERING MATHEMATICS

Step 3. Write the complementary function with the help of following table.

Roots of the A.E. C.F.

  1. If roots are real and distinct say 1 1 + 2 2 + 3 3 +

m x m x m x c e c e c e ……

m 1 , m 2 , m 3

  1. If two real roots are equal say C.F. = ( c 1 + c 2 x ) e mx^ + 3 3

m x c e + ……

m 1

= m 2

= m

  1. If three roots are equal m 1

= m 2

= m 3

= m C.F. = ( c 1

  • c 2

x + c 3

x^2 ) emx^ + 4 4

m x c e + ……

  1. If roots are a pair of imaginary C.F. = e

a x ( c 1 cos b x + c 2 sin b x )

(non-repeated) numbers (say) a ± i b.

  1. If pair of imaginary roots is repeated C.F. = e a x^ {( c 1 + c 2 x ) cos b x + ( c 3 + c 4 x ) sin b x }

twice, i.e ., a ± i b, a ± i b.

Step 4. Find the particular integral i.e ., P.I. = (^1 )

1 2

D D D

n n n a a an

      • L^ +

X with the help of

following rules.

Functions Particular Integrals

  1. When X = e ax^ then P.I. = (D)

ax e

f

Put D = a

ax e

f a

, provided f ( a ) ¹ 0.

In case f ( a ) = 0 then multiply by x and differentiate the denominator w.r.t. D and continue this process

untill denominator ceases to be zero on putting D = a.

  1. When X = sin ( ax + b ) P.I. =

( )

2

fD

sin ( ax + b ) or cos ( ax + b ) Put D 2 = –a^2

or cos ( ax + b )

2

sin ( ) ( )

f -

ax b a

or cos ( ax + b ) provided

2 f( - a ) ¹ 0

In case of failure apply to above mentioned rule of (1) case.

  1. When X = x m^ then P.I. = [ f (D)] – 1^ xm^ expand f (D) By binomial theorem up to D m^ and

then operate on x m.

  1. When X = e ax^ V, P.I. =

V

(D + )

ax e f a

  1. If X is any other function of x , then P.I. =

X

f (D)

. Resolve

f (D)

into partial fractions and operate

each partial fraction on X.

  1. Remember

X X and X X D D

= = ò (^) - ò

ax ax dx e e dx a

Step 5. Then write the C.S. which is C.S. = C.F. + P.I.

or cos ( ax + b )

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 71

ILLUSTRATIVE EXAMPLES

Example 1. Solve : (D^2 + D + 1)y = (1 + sin x)^2_._ (P.T.U., May 2007)

Sol. (D

2

  • D + 1) y = (1 + sin x )

2

A.E. is D^2 + D + 1 = 0 \ D =

= - ± i

C.F. = 2 1

cos sin 2 2

  • é ù ê + ú êë úû

x

e c x c x

P.I. = (^) ( )

2 2

1 sin D D 1

x = (^) { }

2 2

1 2 sin sin D D 1

x x

2

1 1 cos 2 1 2sin D D 1 2

ì - ü í +^ + ý

    • (^) î þ

x x (^) = 2

2sin cos 2 D D 1 2 2

ì ü í +^ - ý

    • (^) î þ

x x

2 2 2

. 2 sin cos 2 (^2) D D 1 D D 1 2 D D 1

x × (^) e + (^) x - x

(Put D = 0) (Put D^2 = - 1) (Put D 2 = - 4)

1 2 sin cos 2 2 D 2 D 3

× + × x - x

= (^) ( ) 2

3 1 D 3

2 cos cos 2 2 2 D 9

x x

3 1 D 3

2 cos cos 2 2 2 13

x x = (^) [ ]

2 cos 2 sin 2 3 cos 2 2 26

  • x + - x + x

2 cos sin 2 cos 2 2 13 26

  • x - x + x

C.S. is y = (^2 1 )

cos sin 2 2

x

e c x c x

  • é ù ê + ú ë û

2 cos 2

  • x

sin 2 cos 2 13 26

  • x + x.

Example 2. Solve : ( D – 2 )^2 y = 8 ( e 2x^ + sin 2x + x 2 ). (P.T.U., May 2009)

Sol. A.E. is (D – 2)^2 = 0 \ D = 2, 2

C.F. = ( c 1 + c 2 x ) e

2 x

P.I. = (^) ( )

2 2 2

8 sin 2 (D 2)

x é (^) e + x + x ù

  • ë^ û

2 2 2 2 2

8 sin 2 (D 2) (D 2) (D 2)

x e x x

é ù ê +^ + ú êë -^ -^ - úû

Now,

2 2

(D 2)

x e

Put D = 2; case of failure

2(D 2)

×

x x e | Put D = 2. Case of failure

x x ×^ e =

2 2 2

x (^) x e

2

sin 2 (D 2)

x

2 2

sin 2 sin 2 D 4D 4 2 4D 4

x = x

[Q Putting D 2 = – 2 2 ]

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 73

\ P.I. =

2

  • 2 1 –

9 6 4

x (^) x x x x e e e

Hence the C.S. is y = c 1 e

  • 2 x
    • ( c 2 + c 3 x ) e

x

2

  • 2 1 –

9 6 4

x (^) x x x x e e e.

Example 4. Solve :

4

4

d y

dx

- y = cos x cosh x. (P.T.U., May 2007, 2011)

Sol. Given equation in symbolic form is (D^4 – 1) y = cos x cosh x

A.E. is D^4 – 1 = 0 or (D 2 – 1) (D 2 + 1) = 0 \ D = ± 1, ± i

C.F. = c 1

ex^ + c 2

e –^ x^ + e^0 x^ ( c 3

cos x + c 4

sin x )

= c 1

e x^ + c 2

e –^ x^ + c 3

cos x + c 4

sin x

P.I. =

4 4

cos cosh cos D 1 D 1 2

x x e e x x x

æ - ö

= (^) ç ÷

    • è ø

4 4

cos cos (^2) D 1 D 1

x x e x e x

é (^) - ù ê + ú ë -^ - û

4 4

cos cos (^2) (D 1) 1 (D 1) 1

x x e x e x

é (^) - ù ê + ú êë +^ -^ -^ - úû

4 3 2 4 3 2

cos cos (^2) D 4D 6D 4D D 4D 6D 4D

x x e x e x

é (^) - ù ê + ú ë +^ +^ +^ -^ +^ - û

Put

2 D =– 1

( ) ( ) ( )

2 2

cos cos (^2 1) 4D 1 6 1 4 D ( 1) 4D( 1) 6( 1) 4D

x x e x e x

é ù ê (^) + ú ê (^) - + - + - + - - - + - - ú ë û

cos cos cos cosh cos 2 5 5 5 2 5

x x x x e^ e e x e x x x x

é ù æ^ + ö ê +^ ú = -^ ç ÷ = - ë -^ -^ û è^ ø

Hence the C.S. is y = c 1

ex^ + c 2

e –^ x^ + c 3

cos x + c 4

sin x

cos cosh 5

x x.

Example 5. Solve:

2

2

d y 4 y dx

  • = x sin 2x. (P.T.U., Dec. 2002)

Sol. S.F. of given equation is

(D^2 + 4) y = x sin 2 x

A.E. is D

2

  • 4 = 0 \ D = ± 2 i

C.F. is e^0 .x^ (cos 2 x + i sin 2 x ) = cos 2 x + i sin 2 x

P.I. =

2

sin 2 D 4

x x

= Imaginary part of

2 2

D 4

i x x e

= Imaginary part of

( )

2 2

D + 2 4

i x e x i +

= Imaginary part of

2 2

D 4 D – 4 + 4

i x e x

  • i

74 A TEXTBOOK OF ENGINEERING MATHEMATICS

= Imaginary part of

2 2

D

4 D 1 +

4 D

i x e x

i i

é ù ê ú êë úû

= Imaginary part of

2 1 D 1 4 D 4

i x e i x i

é ù

ê ú ë û

= Imaginary part of

2 1 D 1 4 D 4

i x i e i x

  • (^) é ù × + ê ú ë û

= Imaginary part of

2 1

4 D 4

i x i e i x

  • é ù × × + ê ú ë û

= Imaginary part of

( )

2 cos 2 sin 2

4 2 4

  • i x + i x æ^ x i x ö × (^) ç + ÷ è ø

2

cos 2 sin 2 8 16

x x x + x

C.S. is y = C.F. + P.I.

2

1 cos 2^2 sin 2^ cos 2^ sin 2 8 16

x x c x + c x - x + x.

Example 6. Solve :

2 x 2

d y dy

- 2 y x e sin x dx dx

(P.T.U., Dec. 2003, Jan. 2010, Dec. 2010, May 2011, Dec. 2012)

Sol. Given equation in symbolic form is (D 2 – 2D + 1) y = x ex^ sin x

A.E. is D

2

  • 2D + 1 = 0 or (D – 1)

2 = 0 \ D = 1, 1

C.F. = ( c 1 + c 2 x ) e x

P.I. =

2 2

. sin. sin (D 1) (D 1 1)

x x e x x = e x x

2

sin sin D D

x x e x x = e x x dx ò

Integrating by parts (^) = ( )

( cos ) 1( cos ) cos sin D D

x x e x x x dx e x x x

é ù

êë ò úû

= ( cos sin ) (^) { sin 1 .sin (^) } cos

x x e - x x + x dx = e é^ - x x - x dx - x ù ò (^) ë ò û

= (^) [ – sin – cos – cos (^) ] = – ( sin +2 cos )

x x e x x x x e x x x

Hence the C.S. is y = ( c 1 + c 2 x ) e

x

  • e

x ( x sin x + 2 cos x ).

Example 7. Solve :

2

2

d y dy 2 + y dx dx

  • = e

x sin x. (P.T.U., May 2006, Dec. 2011)

Sol.

2

2

d y dy y dx dx

    • = ex^ sin x

S.F. is (D 2 – 2D + 1) y = e x^ sin x

A.E. is m^2 – 2 m + 1 = 0 i.e., m = 1, 1.

C.F. is ( c 1

  • c 2

x ) e x

76 A TEXTBOOK OF ENGINEERING MATHEMATICS

\ Four values of m are

± i - ± i

C.F. =

1 1 2 2 1 2 3 4

cos sin cos sin 2 2 2 2

æ ö - æ ö

ç +^ ÷ +^ ç + ÷ è ø è ø

x x e c x c x e c x c x

P.I. = 2

4 2

cos D D 1 2

  • æ ö

ç ÷

    • è ø

x

e x

4 2

cos 1 1 2 D D 1 2 2

  • (^) æ ö

ç ÷ æ ö æ ö è^ ø ç -^ ÷ +^ ç -^ ÷ + è ø è ø

x

e x [Using art. 2.7 Case IV]

4 3 2

cos (^5 3 21 ) D 2D D D 2 2 16

  • (^) æ ö

ç ÷

        • è^ ø

x

e x

Put D^2 =

D D

x

e

cos 2

x

æ ö

ç ÷ è ø

  • 2

x

e

cos 2

x

æ ö

ç ÷ è ø

i.e., case of failure

3 2

cos (^3 ) 4D 6D 5D 2

x x e x

  • (^) æ ö

ç ÷ è ø

Put D^2 =

cos (^9 3 ) 3D 5D 2 2

  • (^) æ ö

ç ÷ è ø

x x e x

2

1 3 2D 3 3

cos cos 2D (^3 2) 4D 9 2

  • æ ö - -

ç ÷

  • (^) è ø -

x x

x e x x e x

2 2

(2D 3) 3 3 3 3

cos. 2. sin 3cos 12 2 12 2 2 2

  • (^) - - ìï üï = (^) í- - ý
  • (^) ï ï î þ

x x x e x e x x x

LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 77

3 sin 3cos 12 2 2

  • é ù ê + ú êë úû

x

x e x x

C.S. is y = C.F. + P.I.

y = (^2 1 2 23 )

cos sin cos sin 2 2 2 2

æ ö - æ ö

ç +^ ÷ +^ ç + ÷ è ø è ø

x x

e c x c x e c x c x

. 3 sin 3cos 12 2 2

é ù

  • (^) ê + ú êë úû

x

x e x x.

Example 9. Solve : (D

2

- 6D + 13) y = 8e

3x sin 4x + 2

x

. (P.T.U., Dec. 2005)

Sol. A.E. is D

2

  • 6D + 13 = 0

D =

= 3 ± 2 i

C.F. = e

3 x ( c 1 cos 2 x + c 2 sin 2 x )

P.I. =

D 6D 13

2

(8 e

3 x sin 4 x + 2

x )

D 6D 13

2

e

3 x sin 4 x +

D 6D 13

2

x

= 8 e

3 x^1

D 3 6 D 3 13

2 b +^ g -^ b +^ g +

sin 4 x +

D 6D 13

2

e

log 2 x

= 8 e

3 x^1

D 4

2

sin 4 x +

D 6D 13

2

e

x log 2

(Put D

2 = – 16) (Put D = log 2)

= 8 e

3 x .

sin 4 x + ( )

2

log 2 - 6 log 2 + 13

e

x log 2

3 e

x

sin 4 x +

2 blog g -^ log +

x

C.S. is y = e

3 x ( c 1 cos 2 x + c 2 sin 2 x ) –

3 2

e x

x x sin log log

b g -^ +

Example 10. Solve : (D

_2

  • 2D + 2) y = e_

–x sec x. (P.T.U., Dec. 2002)

Sol. A.E. is D

2

  • 2D + 2 = 0

D =

i = – 1 ± i

C.F. = e

  • x [ c 1 cos x + c 2 sin x ]