Partial preview of the text
Download Mathematics Vectors - 4300001 and more Lecture notes Mathematics in PDF only on Docsity!
Unit-2 WVectohS - 14 Macks KX Veettr 4 ineclton tvalue (Displacement ,flocd ot flitd) Scalar 3 ouly Vale, (Mass, Work Energy dy Eleck Prequecy) Eleevile char ® (CO-ordincete rm ge) ACK. y) Veetor {Rue ae ou + yy R AOUYZDaq=xitystze "CX 4,2) (010 (0) L * C1 4h = at f eae b(s,2, 2995 =sitej-3 =ST-J4Sk =| 403,-1,9 a b= hi-k > bh 0, -V ¥ ¥ * ¢€= ar-akt) > C(4,4,~29 * Modulus (21+ 3 : Ue = oer +be* a SWo=yeEM 4) L == +x 7 ear sol? 0b = ot ty7 £ ateyy) +08 = eZ ey. K > atuyy2) = Vale Jr ape % Th DSM eae te ety lateuyesels aaj thk thw tals — | a4 aj + we] =— = t-ap45 then [bl= — Scanned with CamScanner ¥ rb sce (hE) tow ele + Csin@, lesO) Pew (Gliese | ¥* Unit Ve.cto2. |= If Medulus ot vectoh ts putt then FAVE. Vectorn & celled VUult+ Vector. {etl= 4. * Unt veots of Ai A= _B => a (al ¥ Tt @= i-aex Hien tyd wut Vector of Z. Ba Als Ab, es Q= (mow a > Fek veatficocioy + YocPy a =. Fr x =ala+4r tren td wit Vector ot Z A hs galt eel: a) R= (ae vee | ed & piven & substroutten OF Vector —— — > G20, 24) be Cy My 2) | Rs atb= (14,23) + C% Yo, 2,9 RE ro) YE 4} * Tt @= t-3y4sk Gude bur 4 joan shove ttnd C0) ULE Nab (ii) g4ab = Civ) 3-28. | > 0) O45 = (5,-9.3) CIM) 24 435 =G4 -3,4) a)O—-b =€3,-4 4) CIV) 3G 2b = Gs, 14) ¥ TE Da jte-l owl B= Al tj-3k then tind the value of jaa-436l = 3 Vie haa) a = (3,-1,-4), b= €2,4,-3) ond t= ee) them tind Ja+ab-It aAG=0 hn (ao=0 = cajlo = 40 5h *It T-L=0 den TF and b ave perpen deular to each other. FIL Ae G ove perpendicular to earth otey Hen a -b=0. * sie + eure =i ® a _ 4s ¥ Th R= 01,40) And Y= Crd,-d) thea PT X and 4 cre Pervpendicuur eabh x a = a and G=C8,P.4) then Fon whet Value ad r X and ¥ ave perpesdi cular to ench other, (Cip= = Spy # nd he 3) = 04,6, 0) pemperaean ech otter, (1 = 44). # TE Altair and PUAJ-3k ove perpenLilasa 40 eoeh otter Hien dtud ‘By C p= 32. @x ei Y Cm am, 4) and {m, —3 2) are perpendicular +o @ach ster en tind m, Come ap m2 % Find +he ange Letween Two Vector’ (4,2,3) cud 2,342. x Find te angle beteoeen voctohs (1,9,4) and (3,4, 27. wy prove Het tre angle between wo Vectors l4S-k and al-aitk 's st 126 SIN Jae ; , | ia dre amale between ‘too vectons itay avd {Atak 's x S ra ue oan . ; = the angle bekoeen to Vectors [44j-3e and al i-k Is x prove eat (3& ee, . zi - he helween to Vertes SAL FRK aud “A -Ut 'S sil Scanned with CamScanner * ass product CAXB) €2KTs-CFxx) aU = (gla RH KL 26 we Tapey= ae A= Cy, 94,21), be Ota, 49,22) #TXCGEZ) = CAI FEKE peo.) 1 ark y (x Ua 4 sy She +4 Pome a ee IWR enn 2 Chora aera pln ligeegy fh Nga sey liga aL X> Yo 22 kxt- a ExK=O Zz Kart a=lijtak and b=Slt—-kK then thd caxb ati Gxe. FIt = MJ ad B= C4al-ak then bred Wi axel Ul) |cateyx (a-5)) #1 F= 04-93-40) amd B= 4,479) then Wad [ca +6)% Ca-b)), © Simplify. (sof +9j 8k) Lai tan x C3i-al- ak] Box pasdwt a: Cbxt),~(a bc]-|us!7 ss ice dy 2) * Unit Vector perpendiculae to both Vectors *- We a 7 Axb. "t ASMA oy Lb @ a a xb faerie UVP to bath CS ae bl ca «bo. th Roa ae and Beate then dtd elt vector perp to beth vectors X and ¥. Joba Ve & Fiud the yuit vectoh Perpendicula to beth veotons A= (s,4,-2) | oud B=3,4,-2, o ak * Frud the wit Vector perrpevdt cules to beth Vecton§’ a= Gio) | Oud B=C2,4,-2) Ct, LAD | * Tivd the Wut vector Pelpendiculan to beth Vectors A= (3,429 | o> be C2, -2,4) | RIF A= ai-ajtiie and B=tritk then tind Unit vector perperdiculor to Atb ctnd G-F £4174,-2) 14 Xe C4At) ond Y= C%4 <4) thea PTT is perpendicular 40 Y. Also tyud Uwe Vector peopendiculdr to both © and G. se week done by force :- CW) wee-dl, whore F=-Twtd toree FythotFat--.. d= Displacement d,-dy & The fortes Si-aitk awd ~Li+2k act ona particle aud pdeticle moves drow He poivt (2\2,-3) to the pelt G4,9,4) undey dhe ektect oF these formes. Find the werk done, — Cwetc unite) Scanned with CamScanner