























Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Definition and Basics: Introduction to integration as the reverse process of differentiation and explanation of antiderivatives. Rules of Integration: Includes constant functions, power rule, and integration of sums or differences. Examples: Various solved examples to illustrate integration rules and methods. Methods of Integration: Detailed explanation of substitution, integration by parts, and partial fractions. Applications: Practical applications such as finding areas under curves and business problems (e.g., cost, revenue, and profit functions). Exercises: Numerous practice problems for the reader to solve.
Typology: Exercises
1 / 31
This page cannot be seen from the preview
Don't miss anything!
Integration
Integration is the reverse of differentiation. Given the derivative of a function, the process of finding the
original function is the reverse of differentiation, f is said to be an antiderivative of
/ (^) f. Given
/
Example 1
/ f x .
Solution:
Example 2
/ (^) f x x .
Solution:
2
Definition
dx
d
f^ xdx^ F ^ x
Thus F x f x f xdx F x dx
d
For example
5 4 x 5 x dx
d , we have
4 5 (^) 5 x dx x.
Moreover, if c is any constant, then
5 4 x c 5 x dx
d .
So, in general, x dx x c
4 5
NOTE: Different values of c will give different integrals and thus integral of a function is unique.
Thus in general if f is a continuous function, then
If F x f x
/ , where c is the constant of integration.
Rules of Integration
Rule 1. Constant functions
kdx kx c , where k is any constant.
Example
Evaluate the following integrals
(i) 7 dx
(ii) dx 3
(iii) 3 dx
(iv)
dx 7
(v) 0 dx
(vi) dx 2
Solution:
(i) ^7 dx^ ^7 x c
(ii) dx x c 3
(iii) 3 dx 3 x c
(iv) dx x c 7
(v) 0 dx 0 x c c
(vi) dx x c 2
Rule 2: Power Rule
c n
x xdx
n n
1
1 , provided that n 1.
Example
Evaluate the following integrals
(i) xdx
(ii) xdx
2
(iv)
dx x
(v) xdx
5 20
(vi)
xdx
3 5
(vii) dx x
(^5 )
Solution:
(i) c x c
x xdx^
2
2 2 2
(ii) c
x c
x dx
x
5 5 3 15
2 3 3
(iii) c x c x c
x xdx
2
3 2
(^23)
3
3 2 3
(iv) c x c x c
x dx x dx x
^
2
1 2
(^21)
1 2
1 5 10 1
(v) x dx x c x c
5 6 6
3
(vi) xdx x dx x c x c x c x c
3
4 3
4 3 1 4 3
1 3 3 1
4
(vii) c x c
x dx x dx x
^
5
(^51)
1 5
4
(^5 )
Rule 4: Addition or Difference
If (^) f x dx and (^) g x dx exist, then f x g x dx f xdx g x dx
Example
Evaluate the following integrals.
(i) 3 x 5 dx
(ii) x 5 x 4 dx
2
(iii) x dx x
x
5
(iv) x dx x
x
3
(v) dx x
x x x (^)
4 3 3
Solution:
(i) ^ x dx^ xdx dx x c ^ x c x 5 x c 2
2 1 2
2
NOTE: Even though the two integrals technically results in separate constants of integration, these constants may be considered together as one.
(ii) x c
x x x x dx
3 2 2
(iii) x x c x
x dx x x
x (^)
^5 2
2 3
6 4
5
(iv) x dx x x x x c x
x (^)
^13 2
3
(v) x x c
x dx x x dx x
x x x
3
4 3 2
4 3
Rule 5: Power Rule Exception
dx x dx x c x
^
ln
Rule 6: Exponential Function
c a
e e dx
ax ax ^ , where^ a is a constant.
Example
Evaluate the following integrals.
(i) edx
x
(ii) e dx
x
(iii) e^ dx
x
3 4
(iv) e dx
x x
2 4
(v) dx x x
x x x
3 3
(vi) dx x
x x x
2
3 2 2 3 4 5
(vii) 2 3 x 1 4 x 7 2 x dx
(ii) dx x
x (^)
(iii) 40 xdx
(iv) x x dx
2 9 7 13
(v) e dx
x
6
(vi) dx e
2 x
(vii) dx
x
(^)
3 2
(viii) dx x
x x (^)
(ix) dx e
e e x
x x
5 8
3
(x) dx x
x
3
2
2 1
Methods of integration
1. Integration by Substitution.
is changed into variable u so that the
For example, to evaluate dx x x
x
2 , we notice that 7 13 2 7
2 x x x dx
d .
Therefore, we put 7 13
2 u x x , then 2 x 7 dx
du
du u c x x c u
dx x x
x
ln ln 7 13
2
Note: There is no rule for finding a proper substitute and the best guide in the matter is
experience. However, the following suggestions will be useful.
/ , then we put u ax b and a dx
du or
du adx or du a
dx
1 .
Thus
c a
f ax b c a
f u f udu a a
du f ax bdx f u
^
/ /^1 /
(ii) When the integrand is of the form
n n x f x
1 / .
We put
n u^ ^ x and
1
n nx dx
du or du^ nx dx
n 1 .
Thus f x c n
f u c n
f udu n n
du x f x dx f u
n n n
1 / /^1 /^11
n (^) /
..
/
c n
f x c n
u f x f x u du
n n n n
1 1
1 1 /
(iv) When the integrand is of the form
f x
/ .
/ .
Thus
u
du dx f x
f x ^ ln ln
/
f x f x e
/ .
/
f xe dx e du e c e c
f x u u fx ^
/
Example
c
u u du
u
du dx
x
x dx x
x
1 5
(^151) 5
1
5
1 5 3 1
2
5 3
2
c
u
4
5
4
u
3 x 7 c 36
(iv) x x ^3 dx
4 5 1 ^1
Let
5 u 1 x , then
4 5 x dx
du or x dx
du (^) 4
5
c u c x c
u u du
du x x dx u
^ ^3
5 4 3
(^34)
4 3
1 3
1 3 4 5 1 1 20
(v) xe dx
x
2 2
Let
2 u^ ^ x , then x dx
du 2 or du^ ^2 xdx
c e c
e xe dx edu
x
u x u ^
2 2
1
(vi) x e dx
2 3 x^3
Let
3 u 3 x , then
2 9 x dx
du or x dx
du (^) 2
9
x e dx e du e c e c
x u u x ^
2 33 33
9
1
9
1
9
1
(vii) x x dx x x ^2 dx
2 3 2 3 1 ^5 ^5
Let^5
3 u ^ x , then
2 3 x dx
du or x dx
du (^) 2
3
c u c x c
u du
u x x dx x x dx
^ ^2
3 3 2
(^23)
3 2
1 2 2 3 2 3 1 5 9
(viii) x x dx x x dx
2
1 2 2 2 1 2 1
Let
2 u 1 x , then x dx
du 2 or du 2 xdx
x^ ^ x dx x ^ x ^ dx u du u c ^ x ^2 ^ c
2 3 2
3 2 2 2 12 1 1 3
2
3
2 2 1 2 1
(ix)
dx x
dx x
1 2 1
Let u 2 x 1 , then 2 dx
du or dx
du 2
c u c
u u du
du
u
dx x
dx x
2
(^21)
1 2
1
2
1 2
1 2
1 2 1
(x) e e dx e (^) e dx
x x x x 1 ^ ^1
Let
x u 1 e , then
x e dx
du or du e dx
x
e e dx e e dx u du u c e c
x x x x x ^ ^2
3 2
3 2
1 2
1 1 3
Exercise
Evaluate
(i) dx x
x
ln
(ii) x e dx
x
3 4 4
x e dx
x x
2 2 1
(iv) x x dx
2 4 3
(v) x x dx
2 1
(vi) x x^2 dx
3 ^1
(vii) x x dx
3 4 2 ^2
(viii) e e dx
x x
3 1
(ix) xe dx
x
(^2) 1
(x)
dx x
x
3 4
2
(xi) dx e
dx x 1
(xii)
dx x x
1 ln
(xiii) e e e e dx
x x x x
2
xe dx xe e dx xe e c
x x x x x ^
(ii) xdx ln
udv uv vdu
Let u ln x , dx x
du 1 or x
dx du and
let dv dx , on integrating both sides
dv ^ dx
i.e. v x
x
dx ln xdx x ln x x
x ln x dx
x ln x x c
(iii) xe dx
x
3
udv ^ uv vdu
Let u x , then 1 dx
du or du dx and
Let dv e dx
3 x , on integrating we get
i.e. dv e dx
x ^
3
3 x e v
dx
xe e xe dx
x x x
3 3 3
e dx
xe (^) x
x
3
3
c
xe e
x x
3 3
c
xe e
x x 3 9
3 3
2 ln
udv ^ uv vdu
2 u ln x , then x dx x
du ln
or xdx x
du ln
and
Let dv dx , on integrating we get i.e. dv (^) dx
v x
x
x dx x x x
^ ln
ln ln
2 2
x ln x 2 ln xdx
2 ……….(1)
Again applying integration by parts for
2 ln xdx
udv ^ uv vdu
Let u ln x , then dx x
du 1 or x
dx du and let dv 2 dx , on integrating both sides
we get v 2 x
x
dx 2 ln xdx 2 x ln x 2 x
2 x ln x 2 dx
2 x ln x 2 x c ………….. (2)
The substituting the right hand side of equation (2) into equation (1) gives
ln^ x^ ^ dx ^ x ^ ln x ^2 ln xdx
2 2
2
2
Exercise
Evaluate the following integrals
(i) xe dx
x
2 Ans. xe e c
x x
2 2
4
(ii) x e dx
x
2
x
1
(iii) xe dx
x
Ans. e x x c
x 2 2
2
(iv) x e dx
x
3 Ans. x x x e c
x 3 6 6
3 2
(v) x ln xdx
2 Ans. c
x x
x 9
ln 3
3 3
(vi) dx x
x
ln
1
Putting x 3 , we get 4
4 1
1
4 3
9
2 3
2 3 2 x
dx
x
dx dx x x
x
ln 3 4
(iii) Let
2
x
x
x x x x
x x
Ax Bx
Putting x 2 , we get 5
Putting x 3 , we get 5
5 2
1
5 3
1
6
1 2 x
dx
x
dx dx x x
ln 3 5
(iv) On dividing, we get
x x
x
x x
x x
2 2
2 1 4 7
Let
x
x
xx
x
x x
Ax Bx
Putting x 1 , we get B 5
Putting x 0 , we get A 1
dx xx
x dx x x
x x
2
2
dx x
dx x
dx
1
1 5
1 7
Exercise
Evaluate the following integrals
(i)
dx x x
x
(ii)
dx x x
x 1 1
(iii) dx x x
2 1
1 2
(iv) 2 3 1
2 t t
dt
(v) dx x x
x x
2
2
dx
x x
1
2
2 2 2
1
2
3 2 2 3 4
x
x x
3 2 3 2
Definite Integral
f^ xdx^ g ^ x
b
a
(^) is defined as
b a
b
a
Where a and b are two real numbers, and are called, respectively, the lower and the upper
limits of the integral.
Example
Evaluate
(i) x dx
1
0
2 1
(ii) x dx
2
0
(iii) dx x
4
2
(iv) e x dx
x
2
1
3 2 3
Solution:
(i)
1
0
(^13)
0
2
3
x
x x dx
3 3
(ii) x dx
2
0
Let u 6 x 4 , then 6 dx
du or 6
du dx
2
0
2
3
2
0
2
3
2
0
2 2 3
0
2
2 1
0
2
^ u u
u u du
du x dx u
2
0
2
3 6 4 9
x
3 2
3 6 0 4 9
3 2
3 4 9
(^1 ) 2
4
2
dx x ^ x
(iv) 7 3
6 3
(^26363)
1
3
(^23)
1
3 2
e e
e e e e x
e e x dx
x x
Exercise
2
2
2
intervals
(i) 0 , 2
(ii) 2 , 4