Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

math244ohnosorry204yeahmath204, Lecture notes of Mathematics

This is a document which is for math 204 which everyone loves to take this course and then get and D or F

Typology: Lecture notes

Pre 2010

Uploaded on 12/28/2022

unknown user
unknown user 🇹🇷

5 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download math244ohnosorry204yeahmath204 and more Lecture notes Mathematics in PDF only on Docsity!

gait gt | fanct: Qs ~ stating the wronskien of 4,/6), 42 CE Jed f = 9,(e) gol) = J ] 4. Ge) D2 oO ao Ss >, yh = 2e2* sin) + C2 cos €) Dt fT) ly’ [22% fon de) + 2 Isinf Tob th) — eft of-)_ tgnlelos(t) — (i swid)+ ave) )= |-ebt 3) Determine | the | LMntervel ta which anes TNB ts Certain tolhave la! unique- twice! oi Plaeatiable golds b NOT | a Bind! the Solution: (x-2) Phe yl ple) 1S Conkinuevsy every where , excep + xoo not defmeol in this indervel ; Lareesh interval is | xe C ad Ww Yla a a que. solubian By the existence amd uniqueness, theorem, there isa un foc the! LYP) tn this intervel- lugging in y, CeJand Ye Le) tnto the DE_, we cert ensily. see they are tndeed solutions. y,le)oe*, jy, a 2er* y,"2 yer* yaléda tem, ya's Dtelts PF) a Me be etts ber Tc e3fthe fev o Liadake ef coluttan we Ste theit vu eat fl, y at ttt wy. 4, ] led = = et* (9 ett ett) — L.e2# 9. e2t HPS ea Let Ft, rt = eft Smee et is non-tero 2 w avicled so are ) ao undamertel set of solitons andthe whele antera- 0 § hi + 3 t so] 4 ie ak: racers t3 > d rr. ; ot gal 3 ca se Ces ce ¥ ; Ea § uw 8 ie ul Pa) + += > mle 3 < te jo f ~ 5 \ Ar mr OD P {@) w 1) f aR R 3 eo ei QO Als J a a J] + a d ?rs y =~ a + atte | je fle ecu Or SO Se TS a if oJ a! | Sy Cal ES Ey st D2 Pay LLU lsh lg | y i my ™~ b Fal Sq 6 isp! IA cy 23 : a ah Agtits 3 g OM & Like [| te [NY othe given de; SO — ye -lFi Thus (eda elt. ot cette e+ Cosle)sisme)) Ano fen L solution: yea e tC, cosle) + Cp sinle)) Now using the given y On , 4 (Aly a Jie a (CO CoslTh) + oom (Xlu)) = a, & lees) = 2. ae Vn a Es ip a ats Hencel:| Cyeqarhe™4 | Ales: y (Rly) =e" Ceycos (Ay) 4ersm Xl) ) + a4 (ey ean" ly) + Co CogCKh)) = ek : (-G-c,) =O ==> Ciao [ea nate Aly t —»| 4(O)= 2Ge sine) = a= 2. Pe | a 4b)! Gasider Shel T.VP: Sut-ei2uw4+2uso | vle)tal u'ea2 ule) of this probes. | st, lsucln +h a) The characterisHe eq. —> Berta t=0 , 2s eF thas, +he generol solution _u (#)= at. Ca Ons Bt ) + so lSE4)) Solving foc tartial| conditions: ulo)=2=\e°. Ce, Cosco) + cp -sinlo) mic, Ls [ea 2 u'lo) = Zot. Cos Coslo)+ peceny ar iS CBiscrsinb) « fai C Coste) ) aH a] | @ 2 Pos C (BL Co. we) => ¢cCg> CR “Here the solation :| uled= eM C2cosl Be) + ein CE 4) By b) Useag a graph we.con see that after Ta d1b-75, we have |ule)lco.d. Ll Froblenl aie" Fy st k el-| val bn le) bocsame x x ee (a dt (4 A? 7] Re Now for _y (+); by cham cule dy dg (Ae || 4 [ds at ax Lae tds! ay A Nita we oa a 2 = : + eal = a _ dj)! att ) Ae” dx ee abet 2) a iz Now inthe eg, grven, Paktmng ux) instead of 4 le) : 2 WG)4 seve): Bye) ee 4 (45 a9!) oe ida List So oOo (6) gd t Vode ada? ae = ye) tq x) + dyl Jeo, Now seve very charaatesishe 2, Fel LP le Bl lato [iC ddd | ek | coe 8 And the isolation: y(x) = Qe i+ Cp ee, Bat smee xebn (4) ; y le = Ca¥ + Co. 473