



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Machine Learning manual is a contain a linear machine learning modul.
Typology: Lab Reports
1 / 5
This page cannot be seen from the preview
Don't miss anything!
import numpy as nm import matplotlib.pyplot as mtp import pandas as pd data_set= pd.read_csv('Salary_Data.csv') x= data_set.iloc[:, :-1].values y= data_set.iloc[:, 1].values
from sklearn.model_selection import train_test_split x_train, x_test,y_train,y_test=train_test_split(x,y,test_size=1/3, random_state=0) STEP-2: TRAINING DATASET #Fitting the Simple Linear Regression model to the training dataset from sklearn.linear_model import LinearRegression regressor= LinearRegression() regressor.fit(x_train, y_train) STEP-3: PREDICTION OF TEST SET RESULT #Prediction of Test and Training set result y_pred= regressor.predict(x_test) x_pred= regressor.predict(x_train) STEP-4: VISUALIZING THE TRAINING SET RESULTS mtp.scatter(x_train, y_train, color="green") mtp.plot(x_train, x_pred, color="red")
mtp.title("Salary vs Experience (Training Dataset)") mtp.xlabel("Years of Experience") mtp.ylabel("Salary(In Rupees)") mtp.show() STEP-5: VISUALIZING THE TEST SET RESULTS #visualizing the Test set results mtp.scatter(x_test, y_test, color="blue") mtp.plot(x_train, x_pred, color="red") mtp.title("Salary vs Experience (Test Dataset)") mtp.xlabel("Years of Experience") mtp.ylabel("Salary(In Rupees)") mtp.show()
classifier.fit(x_train, y_train) LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=0, solver='warn', tol=0.0001, verbose=0, warm_start=False) STEP-4: PREDICTION OF TEST SET RESULT #Predicting the test set result y_pred= classifier.predict(x_test) STEP-5: TEST ACCURACY OF THE RESULT #Creating the Confusion matrix from sklearn.metrics import confusion_matrix cm= confusion_matrix() STEP-6: VISUALIZING THE TRAINING SET RESULTS #Visualizing the training set result from matplotlib.colors import ListedColormap x_set, y_set = x_train, y_train x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step =0.01), nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01)) mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.sh ape), alpha = 0.75, cmap = ListedColormap(('purple','green' ))) mtp.xlim(x1.min(), x1.max()) mtp.ylim(x2.min(), x2.max())