Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

MACHINE LERNING MANUAL, Lab Reports of Machine Learning

Machine Learning manual is a contain a linear machine learning modul.

Typology: Lab Reports

2022/2023

Available from 12/22/2023

hitesha-bhesaniya
hitesha-bhesaniya 🇮🇳

2 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
PRATICAL 1
AIM: Implement Linear Regression and Logistic Regression.
DATA: Salary_Data.csv
CODE:
STEP-1: DATA PRE-PROCESSING
import numpy as nm
import matplotlib.pyplot as mtp
import pandas as pd
data_set= pd.read_csv('Salary_Data.csv')
x= data_set.iloc[:, :-1].values y= data_set.iloc[:, 1].values
# Splitting the dataset into training and test set.
from sklearn.model_selection import train_test_split
x_train, x_test,y_train,y_test=train_test_split(x,y,test_size=1/3, random_state=0)
STEP-2: TRAINING DATASET
#Fitting the Simple Linear Regression model to the training dataset
from sklearn.linear_model import LinearRegression
regressor= LinearRegression() regressor.fit(x_train, y_train)
STEP-3: PREDICTION OF TEST SET RESULT
#Prediction of Test and Training set result
y_pred= regressor.predict(x_test)
x_pred= regressor.predict(x_train)
STEP-4: VISUALIZING THE TRAINING SET RESULTS
mtp.scatter(x_train, y_train, color="green")
mtp.plot(x_train, x_pred, color="red")
pf3
pf4
pf5

Partial preview of the text

Download MACHINE LERNING MANUAL and more Lab Reports Machine Learning in PDF only on Docsity!

PRATICAL 1

AIM: Implement Linear Regression and Logistic Regression.

DATA: Salary_Data.csv

CODE:

STEP-1: DATA PRE-PROCESSING

import numpy as nm import matplotlib.pyplot as mtp import pandas as pd data_set= pd.read_csv('Salary_Data.csv') x= data_set.iloc[:, :-1].values y= data_set.iloc[:, 1].values

Splitting the dataset into training and test set.

from sklearn.model_selection import train_test_split x_train, x_test,y_train,y_test=train_test_split(x,y,test_size=1/3, random_state=0) STEP-2: TRAINING DATASET #Fitting the Simple Linear Regression model to the training dataset from sklearn.linear_model import LinearRegression regressor= LinearRegression() regressor.fit(x_train, y_train) STEP-3: PREDICTION OF TEST SET RESULT #Prediction of Test and Training set result y_pred= regressor.predict(x_test) x_pred= regressor.predict(x_train) STEP-4: VISUALIZING THE TRAINING SET RESULTS mtp.scatter(x_train, y_train, color="green") mtp.plot(x_train, x_pred, color="red")

mtp.title("Salary vs Experience (Training Dataset)") mtp.xlabel("Years of Experience") mtp.ylabel("Salary(In Rupees)") mtp.show() STEP-5: VISUALIZING THE TEST SET RESULTS #visualizing the Test set results mtp.scatter(x_test, y_test, color="blue") mtp.plot(x_train, x_pred, color="red") mtp.title("Salary vs Experience (Test Dataset)") mtp.xlabel("Years of Experience") mtp.ylabel("Salary(In Rupees)") mtp.show()

classifier.fit(x_train, y_train) LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='l2', random_state=0, solver='warn', tol=0.0001, verbose=0, warm_start=False) STEP-4: PREDICTION OF TEST SET RESULT #Predicting the test set result y_pred= classifier.predict(x_test) STEP-5: TEST ACCURACY OF THE RESULT #Creating the Confusion matrix from sklearn.metrics import confusion_matrix cm= confusion_matrix() STEP-6: VISUALIZING THE TRAINING SET RESULTS #Visualizing the training set result from matplotlib.colors import ListedColormap x_set, y_set = x_train, y_train x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step =0.01), nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01)) mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.sh ape), alpha = 0.75, cmap = ListedColormap(('purple','green' ))) mtp.xlim(x1.min(), x1.max()) mtp.ylim(x2.min(), x2.max())