Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Machine Learning Assignment: Introduction to Machine Learning Concepts and Techniques, Assignments of Machine Learning

Machine learning assignment Contains notes of different topics

Typology: Assignments

2020/2021

Uploaded on 01/03/2021

Nishakaushik
Nishakaushik 🇮🇳

1 document

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MACHINE LEARNING
ASSIGNMENT
1
Nae:
NISHA
KAUSH1K
Rlno:
19PG
CSo
Q
hat
du
you
mean
by
Machine
Leasunin
?
Dleunuate
b atunun
Supauui
se
d
and
unsu
peLLiSe
d
aunin9.
ms
Machine
leauninq
enablu
8 a
mochi
ne
to
to
auutomaically
lean
Mom
d
at
a,
impAou
p
amance
Hom
exp
euence
3,
and
pHod
ct
thinqs
wwthout being
explicitl
PuDammed
Machine
Lewnninq
a
8ub&tt
a
AI
with
the
hulþ o sampla
histori
cal
d
ata,
which
13
nouin
as
Traininq
Data.
machine
uani
ng
b ulld a "
Mathem
ati
cal
Modil"
at
alguth
ms
heus
un
makinq
pas
di
du
on
S a
dsision3
ui
th
dut
ben
expuatly
pDammed.
Th
mau
uu
p0w
di
thu
in
@umati
oD,
Hhu
higher
wiu
be
ho
pe
m
an
ce.
Machine
leauninq
Can
be
classiie
d
as
b
elow
:
CA
Sup
used
lsaHninq
B)
UnS
upeuis
ed
Leainin
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Machine Learning Assignment: Introduction to Machine Learning Concepts and Techniques and more Assignments Machine Learning in PDF only on Docsity!

MACHINE LEARNING

ASSIGNMENT 1 Nae: NISHA KAUSH1K Rlno: 19PG CSo

Q hat^ du^ you^ mean^ by^ Machine^ Leasunin^? Dleunuate b^ atunun^ Supauuise^ d^ and

unsu peLLiSe^ d^ aunin9.

ms Machine^ leauninq^ enablu^8 a^ mochi^ ne^ toto

auutomaically lean^ Mom^ d^ at^ a,^ impAou

p amance Hom exp euence^ 3,^ and^ pHod^

ct thinqs wwthout^ being^ explicitl^ PuDammed Machine Lewnninq^ a^ 8ub&tt^ a^ AI with the^ hulþ o sampla^ histori^ cal^ d (^) ata, which

13 nouin^ as^ Traininq^ Data.^ machine^ uani^ ng

alguthms b^ ulld^ a^ " Mathem^ ati^ cal^ Modil"^ at heus un^ makinq^ pas^ di^ du^ on^ S (^) a dsision3 (^) ui th dut

ben expuatly^ pDammed.^

Th mau

uu (^) p0w di^ thu^ in^ @umati^ oD,^

Hhu higher wiu

be ho^ pe m an^ ce. Machine leauninq^ Can^ be^ classiie^ d^ as (^) b elow :

CA Sup used lsaHninq

B) UnS^ upeuis ed Leainin

LA) Sup^ uised^ Leastninq^ a^ methud^ in^ uhich^ ul pHOids Sample lablo d dat a to Hhu 3ygkm in Odtxi wain it, and an th basie,ib psudicts h 0up ut (^8) unsupesuuised Leauninqamthod n uuhich a mochine eans uitmd'ur any 8up eui si on. The lainin 9 pOuids uüth thi tt a d ala itha has (^) not bean Jab tud,cla ssitd ocateqavized anà tha alqorithm needs o akt an that dalta wi hout any8upeuuision

Supouised Le.auninq Dtained usinq Labed data Lb aka direet jeedback h cherk iit psudicing C0uttolp nob. pudicts He ourput

Un Supeuui sed laaxninq usinq unlabelad data does (^) not (^) takA anu

La)

dbackk

Jinds thu^ hidden^ patern in data ony in put data io p.suoui dsd o tho model

c

Lo)inpur dato o proLidod tD th mddsl alonq uith h uBbut ce) need8^ &upauiuon^ D ain h modal. CF Cateqaized in Classii- cation and^ Requ 8ion

pHoblems.

does not nard oany

Supauusiom to kain

cLassiied an clusierinq and (^) A'sS o ciati (^) on pJHOblo ms.

B) MetsucR Some comman mettuds used to

Oualllat modsl

ClaSSicatiao melucs =Uhen p.aasAM 1N

classioatian pudiction2 ,th is our type

0utcomes hat couwd occu

alse pD Sin uw talse neq ati^ ws

he3e uaut come1 ast^ aten plottd of a

ConuSidn maUx.

he tH maun^ metucs^ USed^ to^ eUauate^ a

la 83hi cation moda 0U

ACCusiacy io dein ed as tha 7 a C8tt

pudi ction8^ Jor^ "^ hu^ Test^ data

O.cc.uHdcy C0Ocal pwdi^ 9Hud dian^ cuons s

Pu cisiCn io dained as the Haction a ulwant examples (u posius) amo'ng au

th eX ampla3uhich ultu pu dicted" 4+

au

belonq un^ a^ Atan^ cd

w posiiw t fa) se positiuu Mean Ab saluute^ Euok^ tha^ auwaqe^ o^ he

dilunce bw^ 0uqina^ ualu&^ and^ h^

Psudicted

Uau S^ t^ quus us^ H^ measu^ a)^ how^ Jax^ th pwdictions w Juom ha acbualautbut, 2

  1. what o Stasti cal Leasaning Thegy 2 ex plain

dms Statisucal^ leauning^ heosy^ Jo^ a^ am^ eu^ ok^10

o

Machine Leauning dt^ aung^ om^ ths^ Jiuds^ a StaistcS and^ Juncbonal^ Analy^ 3is.^ Jt^ deal3^ with he (^) oblam a Jinding^ a^ þw^ di^ ctiuu^ un^ ction^ based on data.^ Stattstucal^ Leauninq^ Thooy^ has^ Jud^ to Successul appi^ cati^ on^9 in^ eld^9 8uch^ ag Computer^ u^ S1om,^ 8peech^ ucoqnib^

on an d

bio-in g*m atie9. he (^) qo al^3 aunng^ a^

Uunde&tan ding asd^ psud-

i c^ an.^ keasuninq^ Jals^

unt (^) many at e9^ oeS Un (^) clu dn9 3up wused^ Laasunt^ ng^

unS up euuused

auning onu^ no^ oaLni^ nq^ and (^) oi (^) n| o Cment Janina

  • Mtan8 Clusteringdan un supenui sed lear- ningalg.otu hm.Hax daines Hha no.a psus doird cluster 8 that n eed to be suated. hs -meang clus terinq alasuth m maint e 0ms tuuo tasks Dut etmines the best valule 0 K Cente% Doints 0CenDids by an ltest cutiuo pDces HsSiqns each ddta points to its DSest k-Conter ThD& daàa bainb uhich aHo near tD ha pasticu LO Cnte CD.as a clulte he wor King o - moang alq 09uithm u - S entt thi no^ o\ K tD docido thn no, a duste Gi)Seutt random x- paints 0e cenHtbids iit)Assiqn eoth datapoint to their dpSe gt CentDid,

which uüu orm Hhe pudalined Kclustts

Liv)Calcuuate thu vaiance CLnð place a new cenoid

eac clusteK

Lv Reea th iii) 3p (vid (^) any 0n381qnnm ent OceMS (^) g 0D 810 li Finis Th (^) modal ib (^) ad

olse Lvii)

  1. (^) explain the^ model^ supUS^ EN^ tabon a^ Un^ ea

L ASLon^ ui^ Hh^ on^ Vauable

ine ak^ 9uQHU8^ uon^ do^ ong^ o^ the^ mo8tamOua^ wa^ to dus cube yowe data an d maka bsu dfcu ons en E.

Oveuew o Linea Reqyuion Aqosithm

Ttainin Set

Leuning Alqorithm

Hypathesis Juncion

esbm att d

house (^) Pice The (^) uain in q su^ a Housin^ q lsuce^ in^ td nto^ h Leauning Ho thm. s^ mäin^ job to^ haoduce a untti o0, which^ by^ onuntien^ w^ callad^ h^ for^ hypat he3is). Yau thun use tmat hypathesis uncti on to

Qutpul th estimate bice y bu ghuinqtt the di

a hoU3e^ un^ nput^ c. hg (oc)^ +0,^ (x)^ Th (^) eta's (0 n^ qenetal)^ as^ h Pauametes^ o^ the wun cu on. n abouu^ hyp heSis un^ cion,^ hau^ s^ any^ ans ULatiabla ,i.e.", dat his sUa8an,it io callod Linea RegsusSaon uith ona ya ablu.

qtt batk^ to^ Ahs^ Ofigin (^) a) matu%.^ Mabux (^) Jactosuzation Can bt Used to ds coUU Latent je at Usg. examplu n a CD m mend ation system ik Psume Ne| Ux, ha a ADUP o Usg and a seb a t em s.Giwn hat ta Ch use nau 9Oted 3 om item (^) in Hhu (^) SyStem and uld^ uud^ iko to (^) prediut

how thu users wauU d fate +ha items Hhat th u

not uet ated gu ch a9 UU can mal CO Mm d ati on s D he use n thi g ca3e^ al^ ho^ inamati^ on^ u^ hau^ abauh^ ho e1shn q^ at^ ngs^ Can^ be^ Hou0S^ entéd^

unamatuix.

sSunme w^ hau^5 us3^ and^ 1o^ item3^ and 90tin^9 3 C^ V^ aluus^ ntea^ anqn^ om^ I (^) to (^) 5, 8D Hhu^ matux^ m^ JDok^ So^ mehinq^ Uke^ Hhus

D D3 Dy

U 1 (^03 )

U5 5