Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Laplace Transforms: A Comprehensive Guide with Examples, Study notes of Engineering Mathematics

problem of laplace transformation

Typology: Study notes

2019/2020

Uploaded on 05/12/2020

praman-singh
praman-singh 🇮🇳

2 documents

1 / 32

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Example: Find 𝑳{𝒄𝒐𝒔 𝒂𝒕−𝒄𝒐𝒔 𝒃𝒕
𝒕}
Solution: 𝐿{𝑐𝑜𝑠 𝑎𝑡 𝑐𝑜𝑠 𝑏𝑡}=𝐿{𝑐𝑜𝑠 𝑎𝑡}𝐿{𝑐𝑜𝑠 𝑏𝑡}=𝑠
𝑠2+𝑎2𝑠
𝑠2+𝑏2
𝐿{𝑐𝑜𝑠 𝑎𝑡 𝑐𝑜𝑠 𝑏𝑡
𝑡}= [ 𝑠
𝑠2+𝑎2𝑠
𝑠2+𝑏2]𝑑𝑠
𝑠
=[1
2𝑙𝑜𝑔 (𝑠2+𝑎2)1
2𝑙𝑜𝑔 (𝑠2+𝑏2)]𝑠
=[1
2𝑙𝑜𝑔 [𝑠2+𝑎2
𝑠2+𝑏2]]𝑠=1
2[𝑙𝑜𝑔 [1+𝑎2/𝑠2
1+𝑏2/𝑠2]]𝑠
=1
2[𝑙𝑜𝑔 1 𝑙𝑜𝑔 [1+𝑎2
𝑠2
1+𝑏2
𝑠2]]
=1
2𝑙𝑜𝑔 [1+𝑎2
𝑠2
1+𝑏2
𝑠2]=1
2𝑙𝑜𝑔 [𝑠2+𝑏2
𝑠2+𝑎2]
𝐿{𝑐𝑜𝑠 𝑎𝑡 𝑐𝑜𝑠 𝑏𝑡
𝑡}= 𝑒𝑠𝑡{𝑐𝑜𝑠 𝑎𝑡 𝑐𝑜𝑠 𝑏𝑡
𝑡}
0𝑑𝑡=1
2𝑙𝑜𝑔 [𝑠2+𝑏2
𝑠2+𝑎2]
𝑒−𝑡{𝑐𝑜𝑠 𝑎𝑡 𝑐𝑜𝑠 𝑏𝑡
𝑡}
0𝑑𝑡=1
2𝑙𝑜𝑔 [1+𝑏2
1+𝑎2]
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20

Partial preview of the text

Download Laplace Transforms: A Comprehensive Guide with Examples and more Study notes Engineering Mathematics in PDF only on Docsity!

Example: Find 𝑳 {𝒄𝒐𝒔 𝒂𝒕−𝒄𝒐𝒔 𝒃𝒕𝒕 }

Solution: 𝐿{𝑐𝑜𝑠 𝑎𝑡 − 𝑐𝑜𝑠 𝑏𝑡} = 𝐿{𝑐𝑜𝑠 𝑎𝑡} − 𝐿{𝑐𝑜𝑠 𝑏𝑡} = (^) 𝑠 (^2) +𝑎𝑠 2 − (^) 𝑠 (^2) +𝑏𝑠 2

𝑡 } = ∫^ [^

𝑠^2 + 𝑎^2 −^

𝑠^2 + 𝑏^2 ] 𝑑𝑠

∞ 𝑠 = [^12 𝑙𝑜𝑔 (𝑠^2 + 𝑎^2 ) − 12 𝑙𝑜𝑔 (𝑠^2 + 𝑏^2 )]𝑠

= [^12 𝑙𝑜𝑔 [𝑠

(^2) +𝑎 2 𝑠^2 +𝑏^2 ]] 𝑠

∞ = 12 [𝑙𝑜𝑔 [1+𝑎

(^2) /𝑠 2 1+𝑏^2 /𝑠^2 ]] 𝑠

= 12 [𝑙𝑜𝑔 1 − 𝑙𝑜𝑔 [

1+𝑎𝑠 22 1+𝑏𝑠^22

]]

2 𝑙𝑜𝑔 [

2 𝑠^2 1 + 𝑏

2 𝑠^2

] =

2 𝑙𝑜𝑔 [

𝑠^2 + 𝑏^2

𝑠^2 + 𝑎^2 ]

𝑡 } = ∫^ 𝑒

∞ 0

2 𝑙𝑜𝑔 [

𝑠^2 + 𝑏^2

𝑠^2 + 𝑎^2 ]

∴ ∫ 𝑒−𝑡^ {

∞ 0

2 𝑙𝑜𝑔 [

1 + 𝑏^2

1 + 𝑎^2 ]

Example: Find 𝐿 {∫ 𝑒 0 𝑡 −𝑡^ 𝑠𝑖𝑛 𝑡𝑡 𝑑𝑡}

Solution : We know that

𝐿{𝑠𝑖𝑛 𝑡} = (^) 𝑠 (^21) +1 = 𝑓(𝑠).

Now by division rule i.e. if 𝐿{𝑓(𝑡)} = 𝑓(𝑠), then 𝐿 {𝑓(𝑡)𝑡 } = ∫𝑠 ∞𝑓(𝑠)𝑑𝑠

∴ 𝐿 {

𝑡 } = ∫^ 𝑓(𝑠)𝑑𝑠

∞ 𝑠

𝑠^2 + 1 𝑑𝑠

∞ 𝑠

= [𝑡𝑎𝑛−1^ 𝑠]𝑠∞

∴ 𝐿 {𝑒−𝑡^ 𝑠𝑖𝑛 𝑡𝑡 } = 𝑐𝑜𝑡−1(𝑠 + 1) by first shifting property 𝐿{𝑒𝑎𝑡𝑓(𝑡)} = 𝑓(𝑠 − 𝑎)

∴ 𝐿 {∫ 𝑒 0 𝑡 −𝑡^ 𝑠𝑖𝑛 𝑡𝑡 𝑑𝑡} = (^1) 𝑠 𝑐𝑜𝑡−1(𝑠 + 1) by integral rule 𝐿 {∫ 𝑓(𝑡) 0 𝑡 𝑑𝑡} = (^1) 𝑠 𝑓(𝑠)

Example: Find 𝐿{(𝒆𝒂𝒕^ − 𝒄𝒐𝒔 𝒃𝒕)/𝒕}

Solution : We know that

𝐿{𝑓(𝑡)} = 𝐿{𝑒𝑎𝑡^ − 𝑐𝑜𝑠 𝑏𝑡} = 𝐿{𝑒𝑎𝑡^ } − 𝐿{𝑐𝑜𝑠 𝑏𝑡} =

𝑠 − 𝑎 −^

𝑠^2 + 𝑏^2 = 𝐹(𝑠)

Now, 𝑓(𝑡) = 2𝑡^ = 𝑒𝑙𝑜𝑔2𝑡 = 𝑒𝑡.𝑙𝑜𝑔2^ = 𝑒𝑙𝑜𝑔2.𝑡

∴ 𝐿{𝑓(𝑡)} = 𝐿{𝑒𝑙𝑜𝑔2.𝑡} =

Now, 𝑔(𝑡) = 𝑐𝑜𝑠 2𝑡−𝑐𝑜𝑠 3𝑡𝑡

𝐿{𝑐𝑜𝑠 2𝑡 − 𝑐𝑜𝑠 3𝑡} =

𝑠^2 + 4 −^

𝑠^2 + 9

𝑡 } = ∫^ [^

𝑠^2 + 4 −^

𝑠^2 + 9] 𝑑𝑠

∞ 𝑠

= [

2 [𝑙𝑜𝑔 (𝑠

2 + 4) − 𝑙𝑜𝑔(𝑠 2 + 9)]]

𝑠

𝑠^2 + 9

𝑠^2 + 4)

Now, ℎ(𝑡) = 𝑡 𝑠𝑖𝑛 𝑡

𝐿{𝑠𝑖𝑛 𝑡} = (^) 𝑠 (^21) +1,

Then 𝐿{ 𝑡 𝑠𝑖𝑛 𝑡} = − (^) 𝑑𝑠𝑑 ( (^) 𝑠 (^21) +1) = (^) (𝑠 2 2𝑠+1) 2

∴ 𝐿 {2𝑡^ +

𝑡 + 𝑡 𝑠𝑖𝑛 𝑡} =^

𝑠^2 + 9

𝑠^2 + 4) +^

(𝑠^2 + 1)^2

Example. Find inverse Laplace Transform of 𝑓(𝑠) = 𝑠

2 (𝑠−2)^3.

Solution. Clearly,

𝑠^2 (𝑠 − 2)^3 =^

(𝑠 − 2) +^

(𝑠 − 2)^2 +^

(𝑠 − 2)^3

𝑠^2

(𝑠 − 2)^3 =

𝐴(𝑠 − 2)^2 + 𝐵(𝑠 − 2) + 𝐶

(𝑠 − 2)^3

⇒ 𝑠^2 = 𝐴(𝑠 − 2)^2 + 𝐵(𝑠 − 2) + 𝐶

⇒ 𝑠^2 = 𝐴(𝑠^2 − 4𝑠 + 4) + 𝐵(𝑠 − 2) + 𝐶

On comparing the coefficients of different powers of 𝑠, we get

⇒ 𝐴 = 1 −4𝐴 + 𝐵 = 0 ⇒ 𝐵 = 4 4𝐴 − 2𝐵 + 𝐶 = 0 ⇒ 𝐶 = 4

𝑠^2

(𝑠 − 2)^3 =^

(𝑠 − 2) +^

(𝑠 − 2)^2 +^

(𝑠 − 2)^3

Now, we know that

𝐿{sin 𝑎𝑡} =

𝑠^2 + 𝑎^2

⇒ 𝐿−1^ {

𝑠^2 + 𝑎^2 } =

𝑎 sin 𝑎𝑡

⇒ 𝐿−1^ {

𝑑𝑎 (^

𝑠^2 + 𝑎^2 )} =

𝑎 sin 𝑎𝑡)

⇒ 𝐿−1^ {

−1 𝑑𝑎 𝑑 (𝑠^2 + 𝑎^2 )

(𝑠^2 + 𝑎^2 )^2 } = (

𝑎. 𝑡 cos 𝑎𝑡 − 1. sin 𝑎𝑡 𝑎^2 )

⇒ 𝐿−1^ {

(𝑠^2 + 𝑎^2 )^2 } = (

𝑎. 𝑡 cos 𝑎𝑡 − 1. sin 𝑎𝑡 𝑎^2 )

⇒ 𝑳−𝟏^ {

(𝒔𝟐^ + 𝒂𝟐)𝟐} = (

𝟐𝒂𝟑^ )

∴ 𝐿−1^ {

𝑠^2

(𝑠^2 + 4)^2 } = 𝐿

𝑠^2 + 4} − 𝐿

(𝑠^2 + 4)^2 }

⇒ 𝐿−1^ {

𝑠^2

(𝑠^2 + 4)^2 } = 𝐿

𝑠^2 + 4} − 4𝐿

(𝑠^2 + 4)^2 }

⇒ 𝐿−1^ {

𝑠^2

(𝑠^2 + 4)^2 } =

4 sin 4𝑡 − 4 (

sin 4𝑡 − 4𝑡 cos 4𝑡

  1. 4^3 )

⇒ 𝐿−1^ {

𝑠^2

(𝑠^2 + 4)^2 } =

4 sin 4𝑡 − (

sin 4𝑡 − 4𝑡 cos 4𝑡 32 )

⇒ 𝐿−1^ {

𝑠^2

(𝑠^2 + 4)^2 } =

32 sin 4𝑡 +

8 𝑡 cos 4𝑡

Example. Find inverse Laplace Transform of 𝑓(𝑠) = (^) (𝒔−𝟏)(𝒔𝟓𝒔+𝟑𝟐+𝟐𝒔+𝟓).

Solution. Clearly,

5𝑠 + 3 (𝑠 − 1)(𝑠^2 + 2𝑠 + 5) =^

𝑠 − 1 +^

𝑠^2 + 2𝑠 + 5

5𝑠 + 3 = (𝑠^2 + 2𝑠 + 5)𝐴 + (𝑠 − 1)( 𝐵𝑠 + 𝐶)

On comparing the coefficients of different powers of 𝑠, we get

𝐴 + 𝐵 = 0

2𝐴 − 𝐵 + 𝐶 = 5

⇒ 3𝐴 + 𝐶 = 5

5𝐴 − 𝐶 = 3

⇒ 𝐿−1^ {

(𝑠 − 1)(𝑠^2 + 2𝑠 + 5)} = 𝑒

𝑡 − 𝑒−𝑡𝑐𝑜𝑠 2𝑡 +^3

Example. Find inverse Laplace Transform of 𝑓(𝑠) = (^) 𝒔𝟒+𝟒𝒂𝒔 𝟒.

Solution. Clearly, 𝑠 𝑠^4 + 4𝑎^4 =^

(𝑠^2 + 2𝑎^2 )^2 − 4𝑎^2 𝑠^2

⇒ (𝑠^2 + 2𝑎^2 )^2 − (2𝑎𝑠)^2 = (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)

𝑠^4 + 4𝑎^4 =^

(𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)

(𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠) =^

(𝑠^2 + 2𝑎^2 + 2𝑎𝑠) +^

(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)

⇒ (^) (𝑠 (^2) + 2𝑎 (^2) + 2𝑎𝑠)(𝑠𝑠 (^2) + 2𝑎 (^2) − 2𝑎𝑠) =

(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)(𝐴𝑠 + 𝐵) + (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝐶𝑠 + 𝐷) (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)

⇒ 𝑠 = (𝑠^2 + 2𝑎^2 − 2𝑎𝑠)(𝐴𝑠 + 𝐵) + (𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝐶𝑠 + 𝐷)

On comparing the coefficients of different powers of 𝑠, we get

(1) (^) 0 = 𝐴 + 𝐶, (2) 0 = −2𝑎𝐴 + 𝐵 + 2𝑎𝐶 + 𝐷

(3) (^) 0 = 2𝑎^2 𝐴 − 2𝑎𝐵 + 2𝑎^2 𝐶 + 2𝑎𝐷

(4) (^) 1 = 2𝑎^2 𝐵 + 2𝑎^2 𝐷 ⇒ 𝐵 + 𝐷 = 1 2𝑎^2

From (2) and (4), we get

(5) (^) 0 = −𝐴 + 𝐶

Again from (1) and (5), we get

𝐴 = 𝐶 = 0

Now, from (3), we get

0 = −𝐵 + 𝐷 ⇒ 𝐵 = 𝐷

Thus, from (4), we get

2𝐵 = (^) 2𝑎^12 ⇒ 𝐵 = (^) 4𝑎^12 and so 𝐷 = (^) 4𝑎^12.

(𝑠^2 + 2𝑎^2 + 2𝑎𝑠)(𝑠^2 + 2𝑎^2 − 2𝑎𝑠) =^

4𝑎^2

(𝑠^2 + 2𝑎^2 + 2𝑎𝑠) +^

4𝑎^2

(𝑠^2 + 2𝑎^2 − 2𝑎𝑠)

Example. Find the inverse Laplace transform (^) 𝑠 (^3) −𝑎^13.

Now , 𝑠^3 − 𝑎^3 = (𝑠 − 𝑎)(𝑠^2 + 𝑎𝑠 + 𝑎^2 )

Given, 𝑠 3 −𝑎^13 = (𝑠−𝑎)(𝑠 21 +𝑎𝑠+𝑎 2 ) = (𝑠−𝑎)𝐴 + (𝑠 2 +𝑎𝑠+𝑎𝐵𝑠+𝐶 2 )

(𝑠 − 𝑎)(𝑠^2 + 𝑎𝑠 + 𝑎^2 ) =

𝐴(𝑠^2 + 𝑎𝑠 + 𝑎^2 ) + (𝐵𝑠 + 𝐶)(𝑠 − 𝑎)

(𝑠 − 𝑎)(𝑠^2 + 𝑎𝑠 + 𝑎^2

⇒ 1 = 𝐴(𝑠^2 + 𝑎𝑠 + 𝑎^2 ) + (𝐵𝑠 + 𝐶)(𝑠 − 𝑎)

Comparing the different powers of ‘s’.

𝐴 + 𝐵 = 0 (1)

𝑎𝐴 − 𝑎𝐵 + 𝐶 = 0 (2)

𝑎^2 𝐴 − 𝑎𝐶 = 1 (3)

From (1), 𝐵 = −𝐴

Again from (2), 2𝑎𝐴 + 𝐶 = 0 ⇒ 𝐶 = −2𝑎𝐴

Now from (3), 𝑎^2 𝐴 + 2𝑎^2 𝐴 = 1 ⇒ 𝐴 = (^) 3𝑎^12

∴ 𝐵 = − (^) 3𝑎^12 and 𝐶 = − (^) 3𝑎^2

Thus,

𝑠^3 − 𝑎^3 =^

3𝑎^2

− 3𝑎^12 𝑠 − 3𝑎^2

(𝑠^2 + 𝑎𝑠 + 𝑎^2 )

𝑠^3 − 𝑎^3 =^

3𝑎^2

(𝑠 − 𝑎) −^

3𝑎^2

(𝑠^2 + 𝑎𝑠 + 𝑎^2 )

∴ 𝐿−1^ {

𝑠^3 − 𝑎^3 } =^

3𝑎^2 𝐿

(𝑠 − 𝑎)} −^

3𝑎^2 𝐿

(𝑠^2 + 𝑎𝑠 + 𝑎^2 )}

⇒ 𝐿−1^ {

𝑠^3 − 𝑎^3 } =^

3𝑎^2 𝑒

3𝑎^2 𝐿

(𝑠^2 + 𝑎𝑠 + 𝑎^2 )}

Now, 𝐿−1^ { (^) (𝑠 (^2) +𝑎𝑠+𝑎𝑠+2𝑎 (^2) )} = 𝐿−1^ {

𝑠+𝑎 2 +3𝑎 2 (𝑠+𝑎 2 )^2 +3𝑎 42

= 𝐿−1^ {

(𝑠 + 𝑎/2)^2 + (√3 𝑎/2)^2

(𝑠 + 𝑎/2)^2 + (√3 𝑎/2)^2

= 𝑒−𝑎𝑡/2𝐿−1^ {

𝑠^2 + (√3 𝑎/2)^2

𝑠^2 + (√3 𝑎/2)^2

2.^

𝑡 0

=

𝑡 0

We know that 𝟐 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 = 𝒔𝒊𝒏 (𝑨 + 𝑩) − 𝐬𝐢𝐧(𝑨 − 𝑩)

∴ 2 𝑐𝑜𝑠 𝒂𝒖 𝑠𝑖𝑛 𝒂(𝒕 − 𝒖) = 𝑠𝑖𝑛(𝑎𝑢 + 𝑎𝑡 − 𝑎𝑢) − sin(𝑎𝑢 − 𝑎𝑡 + 𝑎𝑢) = sin 𝑎𝑡 − sin(2𝑎𝑢 − 𝑎𝑡)

𝐿−1^ {

(𝑠^2 + 𝑎^2 ).^

(𝑠^2 + 𝑎^2 )} =

2𝑎 ∫ [sin 𝑎𝑡 − sin(2𝑎𝑢 − 𝑎𝑡)]𝑑𝑢

𝑡 0 = (^) 2𝑎^1 [∫ sin 𝑎𝑡 𝑑𝑢 − ∫ sin(2𝑎𝑢 − 𝑎𝑡)𝑑𝑢 0 𝑡 0 𝑡 ]

= (^) 2𝑎^1 [sin 𝑎𝑡 (𝑢) 0 𝑡^ − (^) 2𝑎^1 (cos(2𝑎𝑢 − 𝑎𝑡)) 0 𝑡^ ]

= (^) 2𝑎^1 [t sin 𝑎𝑡 − (^) 2𝑎^1 (cos 𝑎𝑡 − cos 𝑎𝑡)] = (^) 𝟐𝒂𝟏 𝐭 𝐬𝐢𝐧 𝒂𝒕

Verification:

Again, 𝐿{sin 𝑎𝑡} = (^) 𝑠 (^2) +𝑎𝑎 2 ⇒ 𝐿{𝑡 sin 𝑎𝑡} = − (^) 𝑑𝑠𝑑 { (^) 𝑠 (^2) +𝑎𝑎 2 } = (^) (𝑠 2 2𝑎𝑠+𝑎 (^2) ) 2

∴ 𝐿 {

2𝑎 t sin 𝑎𝑡} =

2𝑎 𝐿{t sin 𝑎𝑡} =

2𝑎.^

(𝑠^2 + 𝑎^2 )^2 =^

(𝑠^2 + 𝑎^2 )^2

Example. Apply Convolution theorem to evaluate 𝐿−1^ {(𝒔 (^) 𝟐+𝟐𝟓)(𝒔𝒔 𝟐+𝟏𝟔)}.

Solution. We have

𝐿−1^ {

(𝒔𝟐^ + 𝟐𝟓)(𝒔𝟐^ + 𝟏𝟔)} = 𝐿

(𝑠^2 + 5^2 ).^

(𝑠^2 + 4^2 )} = 𝐿

Thus we have

𝐿−1{𝑓(𝑠)} = 𝐿−1^ { (^) (𝑠 (^2) +5𝑠 (^2) )} = 𝑐𝑜𝑠 5𝑡 = 𝑓(𝑡) and 𝐿−1{𝑔(𝑠)} = 𝐿−1^ { (^) (𝑠 (^2) +4^12 )} = 14 𝑠𝑖𝑛 4𝑡 = 𝑔(𝑡)

∴ 𝑓(𝑢) = 𝑐𝑜𝑠 5𝑢 and 𝑔(𝑡 − 𝑢) = 14 sin 4(𝑡 − 𝑢)

From Convolution theorem,

𝐿−1{𝑓(𝑠). 𝑔(𝑠)} = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢

𝑡 0

⇒ 𝐿−1^ {

(𝑠^2 + 5^2 ).^

(𝑠^2 + 4^2 )} = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢

𝑡 0

= ∫ 𝑐𝑜𝑠 5𝑢

𝑡 0

=

𝑡 0

We know that 𝟐 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 = 𝒔𝒊𝒏 (𝑨 + 𝑩) − 𝐬𝐢𝐧(𝑨 − 𝑩)

Example. Apply Convolution theorem to evaluate 𝐿−1^ { (^) (𝒔𝟐+𝟒𝒔+𝟏𝟑)𝟏 𝟐}.

Solution. We have

(𝑠^2 + 4𝑠 + 13)^2 = [(𝑠 + 2)^2 + 3^2 ]^2

Now, 𝐿−1^ { (^) (𝑠 (^2) +4𝑠+13)^12 } = 𝐿−1^ { (^) [(𝑠+2)^12 +3 (^2) ] 2 } = 𝑒−2𝑡𝐿−1^ { (^) (𝑠 (^2) +3^12 ) 2 } = 𝑒−2𝑡𝐿−1^ {(𝑠 (^2) +3^12 ). (^) (𝑠 (^2) +3^12 )}

Clearly, 𝐿−1^ { (^) (𝑠 (^2) +3^12 )} = 13 𝑠𝑖𝑛 3𝑡 = 𝑓(𝑡) = 𝑔(𝑡)

∴ 𝑓(𝑢) = 13 𝑠𝑖𝑛 3𝑢 and 𝑔(𝑡 − 𝑢) = 13 𝑠𝑖𝑛 3(𝑡 − 𝑢)

From Convolution theorem,

𝐿−1^ { (^) (𝑠 (^2) +3^12 ). (^) (𝑠 (^2) +3^12 )} = 𝑓(𝑡) ∗ 𝑔(𝑡) = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢 0 𝑡 =∫ 0 𝑡^13 𝑠𝑖𝑛 3𝑢 13 𝑠𝑖𝑛 3(𝑡 − 𝑢)𝑑𝑢

𝑡 0

𝑡 0

We know that 𝟐 𝐬𝐢𝐧 𝑨 𝐬𝐢𝐧 𝑩 = 𝒄𝒐𝒔 (𝑨 − 𝑩) − 𝐜𝐨𝐬(𝑨 + 𝑩)

∴ 2 𝑠𝑖𝑛 3𝑢 𝑠𝑖𝑛 3(𝑡 − 𝑢) = cos (3𝑢 − 3𝑡 + 3𝑢) − cos(3𝑢 + 3𝑡 − 3𝑢) = cos(6𝑢 − 3𝑡) − cos 3𝑡

∴ 𝐿−1^ { (^) (𝑠 (^2) + 3^12 ). (^) (𝑠 (^2) + 3^12 )} = 18 1 ∫ [cos(6𝑢 − 3𝑡) − cos 3𝑡]𝑑𝑢 = 18 1 [∫ cos(6𝑢 − 3𝑡)

𝑡 0

du − ∫ cos 3𝑡

𝑡 0

𝑑𝑢]

𝑡 0 = 181 [sin(6𝑢−3𝑡) 6 − cos 3t. 𝑢] 0

𝑡 = 181 [{sin 3𝑡 6 − cos 3𝑡. 𝑡} − {− sin 3𝑡 6 − cos 3𝑡 .0}]

=

18 [

sin 3𝑡 6 − cos 3𝑡. 𝑡 +

sin 3𝑡 6 ] =

sin 3𝑡 3 − 𝑡 cos 3𝑡)

=

(sin 3𝑡 − 3𝑡 cos 3𝑡)

𝐿−1^ {

(𝑠^2 + 4𝑠 + 13)^2 } = 𝑒

(𝑠^2 + 3^2 )^2 } =

(sin 3𝑡 − 3𝑡 cos 3𝑡)

Example. Apply Convolution theorem to evaluate 𝐿−1^ {(𝒔+𝒂)(𝒔+𝒃) 𝟏 }

Solution. We have

𝐿−1^ {

where 𝑓(𝑠) = (^) (𝑠+𝑎)^1 , 𝑔(𝑠) = (^) (𝑠+𝑏)^1

Then, we have

𝐿−1{𝑓(𝑠)} = 𝐿−1^ { (^) (𝑠+𝑎)^1 } = 𝑒−𝑎𝑡^ = 𝑓(𝑡) and 𝐿−1{𝑔(𝑠)} = 𝐿−1^ { (^) (𝑠+𝑏)^1 } = 𝑒−𝑏𝑡^ = 𝑔(𝑡)