




















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An introduction to matrices, including definitions of key concepts such as the order of a matrix, matrix elements, and matrix multiplication. It covers examples of matrix operations like addition, scalar multiplication, and matrix multiplication. The document also discusses the identity matrix, determinants of 2x2 matrices, and the inverse of a matrix. The examples and exercises cover a range of matrix operations and properties, making this a comprehensive introduction to the topic of matrices. This document could be useful for students studying linear algebra, discrete mathematics, or other areas of mathematics that involve matrices.
Typology: Cheat Sheet
1 / 28
This page cannot be seen from the preview
Don't miss anything!
has the order 4 3
Equal Matrices
Same order and identical elements.
Square Matrices
Same number of rows & columns. i.e. 2 2 , 3 3
Addition and Subtraction
Add or subtract the corresponding elements. The matrices must be of
the same order.
A^ ^ B^ ^ C^ ^ A^ ^ B^ C
Multiplication by a constant
Multiply each element by the constant.
©F 22 j 0 b 131 W IKsuytxar QS 6 o 0 f 7 tqwJakr 1 ey DLvLaC 8 .w 4 qAflLlq qr 3 iqgCh 5 tksn 4 rleisKehr 2 vreddg. 7 w EMIa 2 dDeb lwRi 5 tihd cIpn 9 fViZnCiAtmej rAhl 3 g 0 eebrrJa 1 H 26 .A Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
Simplify. Write "undefined" for expressions that are undefined.
3 6 −1 − −5 −
0 − 6 0 2 3
−5 2 − 4 −2 0 − 6 −5 − 1 3 −
5 u 5
2 4
5 6
−4 n n + m −2 n −4 n
4 − 3 m 0
©P a 2 k 0 j 1 y 1 E LKsuqtoa 2 6 SiolfhtawPaFrKeC SLPLACn. 3 w 1 AAlIlz 3 rbi 8 g 5 h 8 tds 0 hr 2 e 3 sVepravReYdc.y m 7 MKaLdheL ewciYtGhp PI 0 njfaiynHixtHen DAilPgEeEb 0 rqa 1 Q 2 j.k Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
Simplify. Write "undefined" for expressions that are undefined.
3 6 −1 − −5 −
0 − 6 0 2 3 3 5 5 − −3 2
−5 2 − 4 −2 0 − 6 −5 − 1 3 − −11 7 4 3 −5 3
5 u 5 −14 u
−6 uw
−10 u
−10 u
2 4
5 6 7 10
−4 n n + m −2 n −4 n
4 − 3 m 0 −4 n + 4 n + m − 5 −2 n + 3 m −4 n
© 5 j 2 G 0 X 1 L 1 R dK 2 uxtVa 5 NSGoEfwtLw 2 ajrYeN mLPLXCs. 8 L dAulCl 4 Vr 1 iHg 6 hktbsa NrBe 8 sme 7 rQv 3 ewdV.C 7 jMHaYdrez owLiotrhA EIQnbfXiLnAict 1 ej 7 AAllgbe 2 bSr 0 aB U 2 U.H Worksheet by Kuta Software LLC
3 −7 −
x + y x − 6
− −6 xy x + y − 5 x − 6 − 6 xy
6 u 3 v
−6 r + t − r 6 s
6 r −4 t −3 r + 2 t − r − 4 t 6 s − 3 r + 2
z − 5 − −1 − 6 z 3 y
−3 y 3 z 5 + z 4 z z − 5 − 3 y −6 + 3 z 4 − 5 z 3 y + 4 z
5 3 5 1 − −6 0 1 − − 5 4 −2 − 6 − 6 11
1 1 6 − 0 0
For matrix multiplication, M N is only possible if,
“ N u m b e r o f c o lu m n s o f M N u m b e r o f r o w s o f N ”
L M^ N^ L^ M N
e.g. M is 4 3 , N is 3 2.
MN is 4 2
NM doesn’t exist!!
2 3 3 2
2 2
3 3
3 2 2 ^3
©u 32 U 01162 O BKduWtXae MSoodfNtB wuafrKeE MLRLXCQ.H O QAjlPlF 1 rsiUg 8 h 2 t 4 su crPeps 9 eHr 0 vOeld 4 .q v xMPadd 8 eB BwqiltIhn yIRnzfUi 3 nWiStteD VAdl 9 gxeGbnrsaX S 2 M.K Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
Simplify. Write "undefined" for expressions that are undefined.
0 2 −2 − ⋅ 6 − 3 0
6 − ⋅ −5 4
−5 − −1 2 ⋅ −2 − 3 5
−3 5 −2 1 ⋅ 6 − 1 −
0 5 −3 1 −5 1 ⋅ −4 4 −2 −
5 3 5 1 5 0 ⋅ −4 2 −3 4 3 −
− 6 0 ⋅ 3 −
3 2 5 2 3 1 ⋅ 4 5 − 5 −1 6
© 7 K 2 I 0 k 1 f 2 k FKQuSt 3 aC lSeoXfIt 0 wmaKrDeU RLMLECH.I m lAklMlz zrjiAgYh 2 thsF KrNeNsHetrevneFd 7 .Q R VMPaJdre 9 rwdiQtAho fIDntfMienWiwtQe 7 gAAldg 8 eTb 0 rBaw z 21 .e Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
Simplify. Write "undefined" for expressions that are undefined.
0 2 −2 − ⋅ 6 − 3 0 6 0 −27 12
6 − ⋅ −5 4 −30 24 15 −
−5 − −1 2 ⋅ −2 − 3 5 −5 − 8 13
−3 5 −2 1 ⋅ 6 − 1 − −13 − −11 −
0 5 −3 1 −5 1 ⋅ −4 4 −2 − −10 − 10 − 18 −
5 3 5 1 5 0 ⋅ −4 2 −3 4 3 − −14 − −19 22
− 6 0 ⋅ 3 − −15 5 18 − 0 0
3 2 5 2 3 1 ⋅ 4 5 − 5 −1 6 Undefined
© 4 e 2 b 0 i 1 r 2 N fK 7 uEtwaN ZSPoYfDt 4 wGanrSea ILxLVCx.q f GA 3 ldlX Vr 1 igg 3 hqtNsZ mrzeDsGe 9 rivRetdd.E U C MxamdoeA Ew 9 iutWhu NIGnRfPi 0 nHiutNeL 9 AvlQgyeHbfrFak u 2 Z. 6 Worksheet by Kuta Software LLC
3 − −3 6 −6 − ⋅ −1 6 5 4 −8 14 33 6 −24 −
5 4 2 − ⋅ − 3 − −
−1 1 − 5 2 − 6 −5 1 −5 6 0 ⋅ 6 5 5 − 6 0 −7 − 10 13 17 60 0 −
−2 − −4 3 5 0 4 − ⋅ 2 −2 2 −2 0 − 8 4 14 −14 8 − 10 −10 10 20 −8 26
−4 − y −2 x − ⋅ −4 x 0 2 y − 16 x − 2 y
5 y 8 x
− 8 y 20 Critical thinking questions:
Create your own worksheets like this one with (^) Infinite Algebra 2. Free trial available at KutaSoftware.com
Denoted by I , such that
M I IM M
I (^) 1 1 , 2
, 3
1 0 0
0 1 0
0 0 1
n I
^
e.g.
Determinant of a 2 by 2 Matrix
Example
Find
(a)
3 2 d e t 1 3
(b)
3 7
2 4
Question
Given that
3 2
x 6
is a singular matrix, find x
Example
3 2 2 1 , 2 5 4 0
A B
(^) ^ ^
. Findd e t (^) A B
Question
Given that
1 4
1 2
A
and
7 1 9
5 5
A B
, findd e t B
The determinant of the matrix
a b
c d
is
defined as a d b c
If a matrix has a determinant of zero,
then it is called a singular matrix
d e t (^) A B (^) d e t (^) A (^) d e t B
©l R 2 w 0 i 1 T 2 q yKluRtB aJ wSGoifst 9 wia 6 rBeJ mLJLlCB .f 3 fA 2 l 2 lF CreiEgHhQtRsJ 2 roersreGrFvjehdg.N m 2 MAaHdreM B w 2 iJt 1 hb LIonafPiOnoietQeK GAjl 8 gIejbHrfaQ t 26 .Y Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
Evaluate the determinant of each matrix.
0 − −6 − −
−6 0 6 − 36
−1 1 −1 4 −
0 4 6 5 −
0 − 6 − 6
5 3 6 6 12 Evaluate each determinant.
−5 3 4 2 −
−9 − −7 − 27
−1 8 5 0 −
8 − −10 9 12
0 6 −8 0 48
10 − −7 3 −
−5 0 2 10 −
2 − 7 − 0
5 2 −2 6 32
If M & N are square matrices and M N I then
.
is the inverse matrix.
Find w , x , y , z in terms of a , b , c , d.
When
1 1 d c M a d b c b^ a
Inverse of a 2 by 2 matrix
Example
Find the inverse of
2 4
1 3
Question
2
3 4
3
A k
(a) Find the two possible values for which A has no inverse
(b) Show that when k 2 , A is self-inverse (i.e. the inverse is the same as the original
matrix)
Example
9 2 3 4 , 3 1 7 6
A B
Find
(a)
1 A
(b)
1 B
(c)
1 B A
The identity matrix is
1 0
0 1
I
The inverse
1 A
of the matrix A has the property 1 1 A A A A I
The inverse of the matrix
a b
c d
is given by
1
d e t
d b
A c^ a
If a matrix is singular then it has no inverse
(^1 1 ) A B B A
(^)
©Z A 2 J 02152 P 6 K 6 uhtPaa bSrovf 5 tIwkaUrqef pLNLmCE.m q GA 0 lLl 0 prsiggxhUttsd yreeEsqecrrvCewda.p A kMKaadIeN fweiKt 9 ho mI 9 nafAiGnDiYtSeQ pAblQgpejbsryaz 22 E.S Worksheet by Kuta Software LLC Kuta Software - Infinite Algebra 2 Name___________________________________
For each matrix state if an inverse exists.
−9 − −2 −
−2 1 −6 1
4 − −9 6
0 0 −6 4 Find the inverse of each matrix.
11 − 2 −
0 − −1 −
−1 7 −1 7
1 − −6 −