Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Portfolio Optimization in Financial Economics, Assignments of Economics

An in-depth analysis of portfolio optimization in financial economics, focusing on the variance and covariance of assets. It covers topics such as the expected return and variance of a portfolio, the impact of correlation between assets, and the optimization of a mean-variance utility function. Examples and formulas for calculating portfolio weights and expected returns.

Typology: Assignments

2022/2023

Uploaded on 04/09/2024

abigail-lee-3
abigail-lee-3 🇺🇸

2 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Financial Economics (ECON 369)
1. Read IS 6.1-6.4 Portfolio.
In general, the portfolio has return rpand its expected value as well as
variance:
rp=α1r1+α2r2+· · · +αnrn,
E(rp) = E(α1r1+α2r2+· · · +αnrn)
=α1E(r1) + α2E(r2) + · · · +αnE(rn)
Var(rp) = Var(α1r1+α2r2+· · · +αnrn)
= Var(α1r1) + Var(α2r2) + · · · + Var(αnrn) +
Cov(α1r1, α2r2) + Cov(α1r1, α3r3) + · · · + Cov(α1r1, αnrn) +
Cov(α2r2, α1r1) + Cov(α2r2, α3r3) + · · · + Cov(α2r2, αnrn) + · · · +
Cov(αnrn, α1r1) + Cov(αnrn, α2r2) + · · · + Cov(αnrn, αn1rn1)
=α2
1Var(r1) + α2
2Var(r2) + ·· · +α2
nVar(rn) +
α1α2Cov(r1, r2) + α1α3Cov(r1, r3) + · · · +α1αnCov(r1, rn) +
α2α1Cov(r2, r1) + α2α3Cov(r2, r3) + · · · +α2αnCov(r2, rn) + · · · +
αnα1Cov(rn, r1) + αnα2Cov(rn, r2) + · · · +αnαn1Cov(rn, rn1)
=α1α1Cov(r1, r1) + α1α2Cov(r1, r2) + · · · +α1αnCov(r1, rn) +
α2α1Cov(r2, r1) + α2α2Cov(r2, r2) + · · · +α2αnCov(r2, rn) + · · · +
αnα1Cov(rn, r1) + αnα2Cov(rn, r2) + · · · +αnαnCov(rn, rn).
Or we can use the matrix/vector notations. Notice that we can summarize
the variance and covariance among the nassets in the following table (or
matrix):
Cov(r1, r1) Cov(r1, r2)· · · Cov(r1, rn)
Cov(r2, r1) Cov(r2, r2)· · · Cov(r2, rn)
· · · · · · · · · · · ·
Cov(rn, r1) Cov(rn, r2)· · · Cov(rn,rn)
,
we use matrix (vectors) notation:
E(rp) = α1α2· · · αn·
E(r1)
E(r2)
· · ·
E(rn)
;
Var(rp) = α1α2·· · αn·
Cov(r1, r1) Cov(r1, r2)· · · Cov(r1, rn)
Cov(r2, r1) Cov(r2, r2)· · · Cov(r2, rn)
· · · · · · · · · · · ·
Cov(rn, r1) Cov(rn, r2)· · · Cov(rn,rn)
·
α1
α2
· · ·
αn
.
1
pf3
pf4
pf5
pf8

Partial preview of the text

Download Portfolio Optimization in Financial Economics and more Assignments Economics in PDF only on Docsity!

Financial Economics (ECON 369)

  1. Read IS 6.1-6.4 Portfolio. In general, the portfolio has return rp and its expected value as well as variance:

rp = α 1 r 1 + α 2 r 2 + · · · + αnrn, E(rp) = E(α 1 r 1 + α 2 r 2 + · · · + αnrn) = α 1 E(r 1 ) + α 2 E(r 2 ) + · · · + αnE(rn) Var(rp) = Var(α 1 r 1 + α 2 r 2 + · · · + αnrn) = Var(α 1 r 1 ) + Var(α 2 r 2 ) + · · · + Var(αnrn) + Cov(α 1 r 1 , α 2 r 2 ) + Cov(α 1 r 1 , α 3 r 3 ) + · · · + Cov(α 1 r 1 , αnrn) + Cov(α 2 r 2 , α 1 r 1 ) + Cov(α 2 r 2 , α 3 r 3 ) + · · · + Cov(α 2 r 2 , αnrn) + · · · + Cov(αnrn, α 1 r 1 ) + Cov(αnrn, α 2 r 2 ) + · · · + Cov(αnrn, αn− 1 rn− 1 ) = α^21 Var(r 1 ) + α^22 Var(r 2 ) + · · · + α n^2 Var(rn) + α 1 α 2 Cov(r 1 , r 2 ) + α 1 α 3 Cov(r 1 , r 3 ) + · · · + α 1 αnCov(r 1 , rn) + α 2 α 1 Cov(r 2 , r 1 ) + α 2 α 3 Cov(r 2 , r 3 ) + · · · + α 2 αnCov(r 2 , rn) + · · · + αnα 1 Cov(rn, r 1 ) + αnα 2 Cov(rn, r 2 ) + · · · + αnαn− 1 Cov(rn, rn− 1 ) = α 1 α 1 Cov(r 1 , r 1 ) + α 1 α 2 Cov(r 1 , r 2 ) + · · · + α 1 αnCov(r 1 , rn) + α 2 α 1 Cov(r 2 , r 1 ) + α 2 α 2 Cov(r 2 , r 2 ) + · · · + α 2 αnCov(r 2 , rn) + · · · + αnα 1 Cov(rn, r 1 ) + αnα 2 Cov(rn, r 2 ) + · · · + αnαnCov(rn, rn).

Or we can use the matrix/vector notations. Notice that we can summarize the variance and covariance among the n assets in the following table (or matrix):    

Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)

we use matrix (vectors) notation:

E(rp) =

α 1 α 2 · · · αn

E(r 1 ) E(r 2 ) · · · E(rn)

Var(rp) =

α 1 α 2 · · · αn

Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)

α 1 α 2 · · · αn

a) You are managing $1bn hedge fund, you plan to invest in one thousand different assets, and $1 million to each instrument. Assuming each asset has historical ¯rn = 7%, standard deviation 15%. What’s the portfolio’s expected return? What’s the portfolio variance and standard deviation when there is NO correlation between each pair of assets?

Answer: In this case, n = 1000 and α 1 = α 2 = · · · = α 1000 = 10001. Thus we have:

rp =

r 1 +

r 2 + · · · +

rn

=

(r 1 + r 2 + · · · + rn) ,

E(rp) =

E(r 1 + r 2 + · · · + rn)

=

1000¯rn

= 7%.

And since there is NO correlation between each pair of assets, the variance of the portfolio should be:

Var(rp) = α^21 Var(r 1 ) + α^22 Var(r 2 ) + · · · + α^2 nVar(rn) = 1000Var(ri) 10002

20%^2

b) You are planning to invest in n different assets with equal weights ( (^1) n ). Assuming each asset has historical ¯rn = ¯r, standard deviation σ. What’s the portfolio expected return? What’s the portfolio variance and standard deviation when there is NO correlation between each pair of asset?

Answer: Notice that we can summarize the variance and covariance among the n assets in the following table (or matrix):

  

Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)

σ^2 0 · · · 0 0 σ^2 · · · 0 · · · · · · · · · · · · 0 0 0 σ^2

and there is NO correlation among different assets:

E(rp) = α 1 E(r 1 ) + α 2 E(r 2 ) + · · · + αnE(rn) =

n nr¯ = ¯r.

Var(rp) =

n

[Var(r 1 ) + Var(r 2 ) + · · · + Var(rn)] =

nVar(ri) n^2

σ^2 n

To find out the optimal α, we need to solve the above equation:

2 ασ A^2 − 2(1 − α)σ^2 B + 2(1 − 2 α)σAσB ρAB = 0.

Thus we need to solve:

ασ^2 A − (1 − α)σ B^2 + (1 − 2 α)σAσB ρAB = 0,

or

α

σ^2 A + σ^2 B − 2 σAσB ρAB

= σ B^2 − σAσB ρAB.

Hence the optimal share in assets A and B are:

α∗^ =

σ^2 B − σAσB ρAB σ^2 A + σ B^2 − 2 σAσB ρAB

1 − α∗^ = σ^2 A − σAσB ρAB σ^2 A + σ B^2 − 2 σAσB ρAB

Insert the number, and we have α∗^ ≈ 0 .7617, and 1 − α∗^ ≈ 0 .2383. b) What is the value of this minimum standard deviation?

The minimized variance is:

L(α∗) = (α∗)^2 σ A^2 + (1 − α∗)^2 σ B^2 + 2α∗(1 − α∗)σAσB ρAB ≈ 0. 00918.

Thus the minimized standard deviation is about 0.0958 or 9.58%. c) What is the expected return of this portfolio. Answer:

E(rp) = α∗E(rA) + (1 − α∗)E(rB ) ≈ 15 .95%.

  1. The covariance between assets A and B is denoted by σAB , and other notations are given below.

Table 2: Two Correlated Assets

Asset ¯r σ A ¯rA σA B r¯B σB

Notice that we can also present the variance-covariance information using the help of the following table (matrix): ( Cov(rA, rA) Cov(rA, rB ) Cov(rB , rA) Cov(rB , rB )

σ^2 A σAB σBA σ B^2

a) Find the proportions α of A and (1 − α) of B that define a portfolio of A and B having minimum standard deviation.

Answer: Define the variance of the portfolio as a function of α:

L(α) = Var(rp) = α^2 Var(rA) + (1 − α)^2 Var(rB ) + 2α(1 − α)Cov(rA, rB )

= α^2 σ^2 A + (1 − α)^2 σ^2 B + 2α(1 − α)σAB.

The optimization problem can be written parsimoniously as:

min α L(α).

The optimal condition to this problem is:

L′(α) = 0.

To find out the optimal α, we need to solve the above equation:

2 ασ A^2 − 2(1 − α)σ^2 B + 2(1 − 2 α)σAB = 0.

Thus we need to solve:

ασ^2 A − (1 − α)σ^2 B + (1 − 2 α)σAB = 0,

or

α

σ^2 A + σ B^2 − 2 σAB

= σ B^2 − σAB.

Hence the optimal share in assets A and B are:

α∗^ =

σ^2 B − σAB σ A^2 + σ^2 B − 2 σAB

1 − α∗^ =

σ^2 A − σAB σ A^2 + σ^2 B − 2 σAB

b) What is the expected return of this portfolio with the smallest possible standard deviation?

Answer:

E(rp) = α∗E(rA) + (1 − α∗)E(rB )

= σ^2 B − σAB σ^2 A + σ B^2 − 2 σAB

r ¯A + σ^2 A − σAB σ^2 A + σ B^2 − 2 σAB

r ¯B.

isolate the α from the other terms:

α∗^ =

r¯ 1 − ¯r 2 A[σ^21 + σ 22 − 2 σ 12 ]

σ 22 − σ 12 σ 12 + σ 22 − 2 σ 12

=

r¯ 1 − r¯ 2 A[σ^21 + σ 22 − 2 ρ 12 σ 1 σ 2 ]

σ^22 − ρ 12 σ 1 σ 2 σ 12 + σ^22 − 2 ρ 12 σ 1 σ 2

1 − α∗^ =

r¯ 2 − ¯r 1 A[σ^21 + σ 22 − 2 σ 12 ]

σ 12 − σ 12 σ 12 + σ 22 − 2 ρ 12 σ 1 σ 2

= r¯ 2 − r¯ 1 A[σ^21 + σ 22 − 2 ρ 12 σ 1 σ 2 ]

σ^21 − σ 12 σ 12 + σ^22 − 2 ρ 12 σ 1 σ 2

  1. a) Two securities are available. The covariance between securities 1 and 2 is denoted by σ 12 , variance being σ^21 and σ^22 , respectively. We can also present the variance-covariance information using the following table (matrix): ( Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) Cov(r 2 , r 1 ) Cov(r 2 , r 2 )

σ 12 σ 12 σ 21 σ^22

Notice that σ 12 = σ 21. The expected rates of return are ¯r 1 and ¯r 2. What percentages of total investment should be invested in each of the two securities to maximize the mean-variance utility of the following?

U (rp, σ^2 p ) = rp −

Aσ^2 p.

Answer: The expected return and variance of the portfolio are calculated below, when α is the weight invested in security 1 (and hence 1 − α in security 2):

rp = E(rp) = αE(r 1 ) + (1 − α)E(r 2 ) = α¯r 1 + (1 − α)¯r 2 ; σ^2 p = Var(rp) = α^2 Var(r 1 ) + (1 − α)^2 Var(r 2 ) + 2α(1 − α)Cov(r 1 , r 2 ) = α^2 σ^21 + (1 − α)^2 σ 22 + 2α(1 − α)σ 12.

The utility function is thus a function of the only endogenous variable, α:

J(α) = U (rp, σ^2 p ) = rp −

Aσ^2 p

= [α¯r 1 + (1 − α)¯r 2 ] −

A

[

α^2 σ 12 + (1 − α)^2 σ^22 + 2α(1 − α)σ 12

]

And the utility maximization problem can be presented succinctly as:

max α J(α).

The optimal condition to this problem is:

J′(α) = 0.

More specifically, we have the optimal condition as:

¯r 1 − r¯ 2 − A

[

ασ^21 − (1 − α)σ^22 + (1 − 2 α)σ 12

]

To find the optimal share invested security 1 and 2, α∗ and 1 − α∗, we isolate the α from the other terms:

α∗^ = r¯ 1 − r¯ 2 A(σ 12 + σ^22 − 2 σ 12 )

σ 22 − σ 12 σ 12 + σ^22 − 2 σ 12

1 − α∗^ =

¯r 2 − ¯r 1 A(σ^21 + σ^22 − 2 σ 12 )

σ^21 − σ 12 σ^21 + σ^22 − 2 σ 12

b) Suppose σ 1 = 0.15, σ 2 = 0.35, σ 12 = 0.02625, ¯r 1 = 15% and ¯r 2 = 25%. The risk aversion coefficient, A, is equal to 4. What percentages of total investment should be invested in security 1 and 2? Notice that the variance-covariance table/matrix can be reported as following:

( σ^21 σ 12 σ 21 σ^22

Answer: To apply the results from part a):

α∗^ =

r¯ 1 − ¯r 2 A(σ^21 + σ 22 − 2 σ 12 )

σ 22 − σ 12 σ^21 + σ 22 − 2 σ 12

=

1 − α∗^ =

r¯ 2 − ¯r 1 A(σ^21 + σ 22 − 2 σ 12 )

σ 12 − σ 12 σ^21 + σ 22 − 2 σ 12

=