




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An in-depth analysis of portfolio optimization in financial economics, focusing on the variance and covariance of assets. It covers topics such as the expected return and variance of a portfolio, the impact of correlation between assets, and the optimization of a mean-variance utility function. Examples and formulas for calculating portfolio weights and expected returns.
Typology: Assignments
1 / 8
This page cannot be seen from the preview
Don't miss anything!
Financial Economics (ECON 369)
rp = α 1 r 1 + α 2 r 2 + · · · + αnrn, E(rp) = E(α 1 r 1 + α 2 r 2 + · · · + αnrn) = α 1 E(r 1 ) + α 2 E(r 2 ) + · · · + αnE(rn) Var(rp) = Var(α 1 r 1 + α 2 r 2 + · · · + αnrn) = Var(α 1 r 1 ) + Var(α 2 r 2 ) + · · · + Var(αnrn) + Cov(α 1 r 1 , α 2 r 2 ) + Cov(α 1 r 1 , α 3 r 3 ) + · · · + Cov(α 1 r 1 , αnrn) + Cov(α 2 r 2 , α 1 r 1 ) + Cov(α 2 r 2 , α 3 r 3 ) + · · · + Cov(α 2 r 2 , αnrn) + · · · + Cov(αnrn, α 1 r 1 ) + Cov(αnrn, α 2 r 2 ) + · · · + Cov(αnrn, αn− 1 rn− 1 ) = α^21 Var(r 1 ) + α^22 Var(r 2 ) + · · · + α n^2 Var(rn) + α 1 α 2 Cov(r 1 , r 2 ) + α 1 α 3 Cov(r 1 , r 3 ) + · · · + α 1 αnCov(r 1 , rn) + α 2 α 1 Cov(r 2 , r 1 ) + α 2 α 3 Cov(r 2 , r 3 ) + · · · + α 2 αnCov(r 2 , rn) + · · · + αnα 1 Cov(rn, r 1 ) + αnα 2 Cov(rn, r 2 ) + · · · + αnαn− 1 Cov(rn, rn− 1 ) = α 1 α 1 Cov(r 1 , r 1 ) + α 1 α 2 Cov(r 1 , r 2 ) + · · · + α 1 αnCov(r 1 , rn) + α 2 α 1 Cov(r 2 , r 1 ) + α 2 α 2 Cov(r 2 , r 2 ) + · · · + α 2 αnCov(r 2 , rn) + · · · + αnα 1 Cov(rn, r 1 ) + αnα 2 Cov(rn, r 2 ) + · · · + αnαnCov(rn, rn).
Or we can use the matrix/vector notations. Notice that we can summarize the variance and covariance among the n assets in the following table (or matrix):
Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)
we use matrix (vectors) notation:
E(rp) =
α 1 α 2 · · · αn
E(r 1 ) E(r 2 ) · · · E(rn)
Var(rp) =
α 1 α 2 · · · αn
Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)
α 1 α 2 · · · αn
a) You are managing $1bn hedge fund, you plan to invest in one thousand different assets, and $1 million to each instrument. Assuming each asset has historical ¯rn = 7%, standard deviation 15%. What’s the portfolio’s expected return? What’s the portfolio variance and standard deviation when there is NO correlation between each pair of assets?
Answer: In this case, n = 1000 and α 1 = α 2 = · · · = α 1000 = 10001. Thus we have:
rp =
r 1 +
r 2 + · · · +
rn
=
(r 1 + r 2 + · · · + rn) ,
E(rp) =
E(r 1 + r 2 + · · · + rn)
=
1000¯rn
= 7%.
And since there is NO correlation between each pair of assets, the variance of the portfolio should be:
Var(rp) = α^21 Var(r 1 ) + α^22 Var(r 2 ) + · · · + α^2 nVar(rn) = 1000Var(ri) 10002
b) You are planning to invest in n different assets with equal weights ( (^1) n ). Assuming each asset has historical ¯rn = ¯r, standard deviation σ. What’s the portfolio expected return? What’s the portfolio variance and standard deviation when there is NO correlation between each pair of asset?
Answer: Notice that we can summarize the variance and covariance among the n assets in the following table (or matrix):
Cov(r 1 , r 1 ) Cov(r 1 , r 2 ) · · · Cov(r 1 , rn) Cov(r 2 , r 1 ) Cov(r 2 , r 2 ) · · · Cov(r 2 , rn) · · · · · · · · · · · · Cov(rn, r 1 ) Cov(rn, r 2 ) · · · Cov(rn, rn)
σ^2 0 · · · 0 0 σ^2 · · · 0 · · · · · · · · · · · · 0 0 0 σ^2
and there is NO correlation among different assets:
E(rp) = α 1 E(r 1 ) + α 2 E(r 2 ) + · · · + αnE(rn) =
n nr¯ = ¯r.
Var(rp) =
n
[Var(r 1 ) + Var(r 2 ) + · · · + Var(rn)] =
nVar(ri) n^2
σ^2 n
To find out the optimal α, we need to solve the above equation:
2 ασ A^2 − 2(1 − α)σ^2 B + 2(1 − 2 α)σAσB ρAB = 0.
Thus we need to solve:
ασ^2 A − (1 − α)σ B^2 + (1 − 2 α)σAσB ρAB = 0,
or
α
σ^2 A + σ^2 B − 2 σAσB ρAB
= σ B^2 − σAσB ρAB.
Hence the optimal share in assets A and B are:
α∗^ =
σ^2 B − σAσB ρAB σ^2 A + σ B^2 − 2 σAσB ρAB
1 − α∗^ = σ^2 A − σAσB ρAB σ^2 A + σ B^2 − 2 σAσB ρAB
Insert the number, and we have α∗^ ≈ 0 .7617, and 1 − α∗^ ≈ 0 .2383. b) What is the value of this minimum standard deviation?
The minimized variance is:
L(α∗) = (α∗)^2 σ A^2 + (1 − α∗)^2 σ B^2 + 2α∗(1 − α∗)σAσB ρAB ≈ 0. 00918.
Thus the minimized standard deviation is about 0.0958 or 9.58%. c) What is the expected return of this portfolio. Answer:
E(rp) = α∗E(rA) + (1 − α∗)E(rB ) ≈ 15 .95%.
Table 2: Two Correlated Assets
Asset ¯r σ A ¯rA σA B r¯B σB
Notice that we can also present the variance-covariance information using the help of the following table (matrix): ( Cov(rA, rA) Cov(rA, rB ) Cov(rB , rA) Cov(rB , rB )
σ^2 A σAB σBA σ B^2
a) Find the proportions α of A and (1 − α) of B that define a portfolio of A and B having minimum standard deviation.
Answer: Define the variance of the portfolio as a function of α:
L(α) = Var(rp) = α^2 Var(rA) + (1 − α)^2 Var(rB ) + 2α(1 − α)Cov(rA, rB )
= α^2 σ^2 A + (1 − α)^2 σ^2 B + 2α(1 − α)σAB.
The optimization problem can be written parsimoniously as:
min α L(α).
The optimal condition to this problem is:
L′(α) = 0.
To find out the optimal α, we need to solve the above equation:
2 ασ A^2 − 2(1 − α)σ^2 B + 2(1 − 2 α)σAB = 0.
Thus we need to solve:
ασ^2 A − (1 − α)σ^2 B + (1 − 2 α)σAB = 0,
or
α
σ^2 A + σ B^2 − 2 σAB
= σ B^2 − σAB.
Hence the optimal share in assets A and B are:
α∗^ =
σ^2 B − σAB σ A^2 + σ^2 B − 2 σAB
1 − α∗^ =
σ^2 A − σAB σ A^2 + σ^2 B − 2 σAB
b) What is the expected return of this portfolio with the smallest possible standard deviation?
Answer:
E(rp) = α∗E(rA) + (1 − α∗)E(rB )
= σ^2 B − σAB σ^2 A + σ B^2 − 2 σAB
r ¯A + σ^2 A − σAB σ^2 A + σ B^2 − 2 σAB
r ¯B.
isolate the α from the other terms:
α∗^ =
r¯ 1 − ¯r 2 A[σ^21 + σ 22 − 2 σ 12 ]
σ 22 − σ 12 σ 12 + σ 22 − 2 σ 12
=
r¯ 1 − r¯ 2 A[σ^21 + σ 22 − 2 ρ 12 σ 1 σ 2 ]
σ^22 − ρ 12 σ 1 σ 2 σ 12 + σ^22 − 2 ρ 12 σ 1 σ 2
1 − α∗^ =
r¯ 2 − ¯r 1 A[σ^21 + σ 22 − 2 σ 12 ]
σ 12 − σ 12 σ 12 + σ 22 − 2 ρ 12 σ 1 σ 2
= r¯ 2 − r¯ 1 A[σ^21 + σ 22 − 2 ρ 12 σ 1 σ 2 ]
σ^21 − σ 12 σ 12 + σ^22 − 2 ρ 12 σ 1 σ 2
σ 12 σ 12 σ 21 σ^22
Notice that σ 12 = σ 21. The expected rates of return are ¯r 1 and ¯r 2. What percentages of total investment should be invested in each of the two securities to maximize the mean-variance utility of the following?
U (rp, σ^2 p ) = rp −
Aσ^2 p.
Answer: The expected return and variance of the portfolio are calculated below, when α is the weight invested in security 1 (and hence 1 − α in security 2):
rp = E(rp) = αE(r 1 ) + (1 − α)E(r 2 ) = α¯r 1 + (1 − α)¯r 2 ; σ^2 p = Var(rp) = α^2 Var(r 1 ) + (1 − α)^2 Var(r 2 ) + 2α(1 − α)Cov(r 1 , r 2 ) = α^2 σ^21 + (1 − α)^2 σ 22 + 2α(1 − α)σ 12.
The utility function is thus a function of the only endogenous variable, α:
J(α) = U (rp, σ^2 p ) = rp −
Aσ^2 p
= [α¯r 1 + (1 − α)¯r 2 ] −
α^2 σ 12 + (1 − α)^2 σ^22 + 2α(1 − α)σ 12
And the utility maximization problem can be presented succinctly as:
max α J(α).
The optimal condition to this problem is:
J′(α) = 0.
More specifically, we have the optimal condition as:
¯r 1 − r¯ 2 − A
ασ^21 − (1 − α)σ^22 + (1 − 2 α)σ 12
To find the optimal share invested security 1 and 2, α∗ and 1 − α∗, we isolate the α from the other terms:
α∗^ = r¯ 1 − r¯ 2 A(σ 12 + σ^22 − 2 σ 12 )
σ 22 − σ 12 σ 12 + σ^22 − 2 σ 12
1 − α∗^ =
¯r 2 − ¯r 1 A(σ^21 + σ^22 − 2 σ 12 )
σ^21 − σ 12 σ^21 + σ^22 − 2 σ 12
b) Suppose σ 1 = 0.15, σ 2 = 0.35, σ 12 = 0.02625, ¯r 1 = 15% and ¯r 2 = 25%. The risk aversion coefficient, A, is equal to 4. What percentages of total investment should be invested in security 1 and 2? Notice that the variance-covariance table/matrix can be reported as following:
( σ^21 σ 12 σ 21 σ^22
Answer: To apply the results from part a):
α∗^ =
r¯ 1 − ¯r 2 A(σ^21 + σ 22 − 2 σ 12 )
σ 22 − σ 12 σ^21 + σ 22 − 2 σ 12
=
1 − α∗^ =
r¯ 2 − ¯r 1 A(σ^21 + σ 22 − 2 σ 12 )
σ 12 − σ 12 σ^21 + σ 22 − 2 σ 12
=