



























Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An overview of hash tables, including hash functions, collision resolution techniques, and linear and quadratic probing. It covers the distribution of keys, efficient computation, and common techniques for handling collisions. Students can use this document as a study aid for understanding hash tables and related concepts.
Typology: Lecture notes
1 / 35
This page cannot be seen from the preview
Don't miss anything!
(^0) Noether (^1) Euler (^2) Cantor 3 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege hash(key) h 0 (key) h 1 (key) … hi(key) = (hash(key) + f(i)) mod N Where N is the table size For linear probing f(i) = i
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6
(^1) Euler 2 3 4 5 6 7 8 9 10 11 (^12) Frege
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6
(^1) Euler 2 3 4 (^5) Hardy 6 7 8 9 10 11 (^12) Frege
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 (^0) Noether (^1) Euler (^2) Cantor 3 4 (^5) Hardy 6 7 8 9 10 11 (^12) Frege
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 (^0) Noether (^1) Euler (^2) Cantor 3 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 (^0) Noether (^1) Euler (^2) Cantor 3 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege Full Full Full Empty Empty Full Full Empty Empty Empty Empty Empty Full
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 Search for Pascal (0) (^0) Noether (^1) Euler (^2) Cantor 3 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege Full Full Full Empty Empty Full Full Empty Empty Empty Empty Empty Full
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 Search for Pascal (0) Insert Pascal Remove Euler Search for Pascal (^0) Noether 1 (^2) Cantor (^3) Pascal 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege Full Empty Full Full Empty Full Full Empty Empty Empty Empty Empty Full
Key Hash Function Value Frege 12 Euler 1 Hardy 5 Noether 12 Cantor 0 Fermat 6 Search for Pascal (0) Insert Pascal Remove Euler Search for Pascal (^0) Noether 1 (^2) Cantor (^3) Pascal 4 (^5) Hardy (^6) Fermat 7 8 9 10 11 (^12) Frege Full Removed Full Full Empty Full Full Empty Empty Empty Empty Empty Full