





































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This is solution to problems of Advanced Engineering Dynamics. Fundamental, Problems, Solution, Answer, Time, Acceleration, Velocity, Displacement, Magnitude, Particle, Area
Typology: Exercises
1 / 45
This page cannot be seen from the preview
Don't miss anything!
Chapter 1 2 Fl2-1. v = Vo + act 10 = 35 + ac(15) ac = -1.67 mjs2^ = 1.67 mjs2 �
Fl2-2. s = So + vot + �act o = 0 + 15t + � (-9.81)t t = 3.06 s
F12-3. ds = v dt
isds = i
t (4t - 3t2)dt
s = (2t2 - t3) m s = 2(42) - 43 = -32 m = 32 m �
Fl2-4. (^) a = (^) '!if = (^) 1ft (0.5t3 - 8t)
a = (1.5t2 - 8) mjs When t = 2 s, a = 1.5(22) - 8 = -2 mjs2 = 2 mjs2^ �
F12-S. v = 'fit = 1ft (2t2 - 8t^ +^ 6) = (4t - 8) mjs v = 0 = (4t - 8)
Ans.
Ans.
Ans.
Ans.
t = 2 s A�
F12-6.
slt=o = 2(02) - 8(0) + 6 = 6 m slt= 2 =^ 2(22) - 8(2) + 6 = -2 m slt= 3 = 2(32) - 8(3)^ +^ 6 = 0 m (ilshot = 8 m + 2 m = 10 m
j v dv = j a ds
I
v
5 m/s^ Jo v = ( V20s - 0.2s2^ + 25) mjs At s =^ 10 m,
Ans.
v =^ V20(1O) - 0.2(102) + 25 =^ 14.3 mjs Ans.
F12-7. v = j(4t2 - 2) dt
v = � t3 - 2t + e 6 8 0
s = j (� t3 - 2t + el ) dt
t = 0, s = -2, e 2 = - t = 2, s = -20, e 1 = -9. t = 4, s = 28.7 m F12-S. a = v 'flf = (20 - 0.05s2)(-0.ls) At s = 15 m, a = -13.1 mjs2 = 13.1 mjs2^ � F12-9. v = 'fit = 1ft ( 0.5t3) = 1.5t vlt=6 s = 1.5(62) = 54 mjs v = 'fit = 1ft (108) = 0 F12-10. ds = v dt 1" ds = i
t (-4t + 80) dt s = -2t2^ + 80t s = -2(2of + 80(20) = 800 ft
Ans.
Ans.
Ans.
a = !b!dt = !Ldt^ (-4t + 80) = -4 ftjs2 = 4 ftjs2^ � Also, a = Ll. vLl.t = 0 20 - s 80 ftfs 0 = -4 ftjs F12-11. a ds = v dv a = � = 0.25sfs (0.25s) = 0.0625s als=40m = (^) 0.0625(40 m) = 2.5 mjs2 (^) --> F12-12. 0 ,,; t < 5 s, v = 'fit = 1ft (3t2) = (6t) mjs vlt=5 s = 6(5) = 30 mjs 5 s < t ,,; 10 s, v = 'fit = 1ft (30t - 75) = 30 mjs v = Ll.Ll.ts = 22510 mm^ - -^755 m^ m^ = 30 mjs o ,,; t < 5 s, a = '!if = 1ft (6t) = 6 mN 5 s < t ,,; 10 s, a = '!if = 1ft (30) = 0 0 ,,; t < 5 s, a = ilvjilt = 6 mjs 5 s < t ,,; 10 s, a = ilvj M = 0
F12-13. 0 � t < 5 s,
dv =^ a dt l
v dv = 1
20 dt v = (20t) m/s v = 20(5) = 100 m/s 5 s < t � t', (�) dv = a dt lv dv = 11 -10 dt 100 mls 5s v = (150 - 1Ot) mis, o = 150 - lOt' t' = 15 s Also, Liv = 0 = Area under the a-t graph 0 = (20 mN)(5 s) + [-(10 m/s)(t' - 5) s] t' = 15 s Fl2-14. 0 � t � 5 s,
ds = v dt sl& =^ 15t21b s = (15t2) m
ds =
30t dt
s = 15(52) =^ 375 m 5 s < t � 15 s, ds = v dt; r^ ds = 11 (-15t + 225)dt
S = (-7.5t2^ + 225t - 562.5) m s = (-7.5)(15)2^ + 225(15) - 562.5 m = 1125 m Ans. Also, Lis = Area under the v-t graph = (^) � (150 m/s)(15 s) = 1 125 m
Fl2-15. l
x dx = 1
32t dt
x = (16t2) m
lY dy = 11 S dt t = (^) � Substituting Eq. (2) into Eq. (1), i =^ 4x
Fl2-16. Y = 0.75(St) = 6t Vx = x = % = 1ft (St) = S m/s ->
Ans.
Ans.
FUNDAMENTAL PROBLEMS 6 8 1
Vy = y = '!l; = 1ft (6t) = 6 m/s i The magnitude of the particle's velocity is v = Vv; + v; = V(S m/s)2 + (6 m/s) = 10 m/s Ans. F12-17. y = (4t2) m Vx = x = 1ft (4t^4 ) = (16t3) m/s -> Vy =^ Y^ =^ 1ft (4t2) = (St) m/s i When t = 0.5 s, v = Vv; + v; =^ V(2 m/s)2^ +^ (4 m/s) = 4.47 m/s Ans. ax = Vx = 1ft (16t3) = (4St2) mN ay = Vy = 1ft (St) = S m/s When t =^ 0.5 s, a =^ Va; + a; =^ V(12 m/s2f + (S mN) = 14.4 m/s2 Ans. F12-18. y = 0.5x y = 0.5.: Vy = t When t = 4 s, Vx = 32 m/s Vy = 16 m/s v = Vv; + v; =^ 35.S m/s ax = Vx = 4t ay = Vy = 2t When t = 4 s, ax = 16 m/s2^ ay = S m/s
Ans.
a = Va; + a; = V162^ + S2^ = 17.9 mN Ans. F12-19. Y = (t4) m Vx = x = (4t) m/s When t = 2 s, Vx = S m/s Vy = 32 m/s v = Vv; + v; = 33.0 m/s ax =^ Vx = 4 m/s ay =^ Vy =^ (12t2) m/s When t = 2 s, ax = 4 m/s2 ay = 4S m/s
Ans.
a = Va; + a; = V42^ + 4S2^ = 4S.2 m/s2 Ans.
F12-30.
Fl2-31.
tan 8 = ¥X = fx (f4 x2) = 12 x
x�lO ft
Id y/dx I 1121 x�lO ft = 26.468 ft _ (^) v2 _ (20 ft/S)2^ _ 2
a = �--�--------� V(at)2 +^ (a,i^ = V(6 ft/S2^ f^ + (15.11 ft/S2) = 16.3 ft/s2^ Ans.
= -0.4712 m/s
VB = 20.07 m/s VB2^ (20.07 m/s? (^2)
= V( -0.4712 m/s2)2^ + ( 1.343 m/s2) = 1.42 m/s2^ Ans.
Fl2-32. at ds = v dv
at = v !flf = (0.2s)(0.2) = (0.04s) m/s
a = - =v2^ (10 m/s)2= 0.2 m/s n p (^) 500 m a = Va? + a� = V(2 m/s2)2 + (0.2 mN) = 2.01 m/s2 Ans.
ve = r8 = (4008) ft/s v = Vv; + vJ 55 ft/s = V02^ �^ --+ [(4008) ft/S]2--�-------,;: 8 = 0.1375 rad/s Ans.
FUNDAMENTAL PROBLEMS 6 8 3
F12-34. r = 0.lt3It�1.5 s = 0.3375 m r = 0.3t2It�1.5 s = 0.675 m/s r = (^) 0.6tlt�1.5 s = 0.900 m/s 8 = (^) 4t3/2It�1.5 s = 7.348 rad 8 =^ 6tl/2It�1.5 s = 7.348 rad/s 8 =^ 3t-l/2It�1.5 s = 2.449 rad/s Vr = r = 0.675 m/s ve = r8 = (0.3375 m)(7.348 rad/s) = 2.480 m/s ar = r - r8 2 = (0.900 mN) - (0.3375 m)(7.348 rad/s) = -17.325 m/s ae = r8 + 2i8 = (0.3375 m)(2.449 rad/s2)
= 2.57 m/s a = � = V( - 17.325 m/s2)2 + ( 10.747 m/s2)
Ans.
= 20.4 m/s2^ Ans. F12-3S. r = 28 r = 28 r = 28 At 8 = 1T/4 rad, r = 2(*) = I r = 2(3 rad/s) = 6 ft/s r = 2(1 rad/s) = 2 ftN
= -12.14 ft/S ae = r8 + 2rO = (I ft)(1 rad/s2) + 2(6 ft/s)(3 rad/s) = (^) 37.57 ft/S
= V(-12.14 ft/s2)2 + (37.57 ft/S2) = 39.5 ftN Ans.
6 8 4 PART I A L S O L U T I O N S A N D A N S W E R S
Fl2-36. r =^ eO r = eOiJ r = e°(j + eOiJ ar = r - riJ2^ = (e°(j + eOiJ2) - (eOiJ2 = e1T/4(4) = 8.77 m/s2^ Ans. ao = rO + U O =^ (e°(j) + (2(e°iJ)iJ)^ =^ eO(O + 2(2) = e1T/4(4 + 2(2)2) = 26.3 m/s
Fl2-37. r = [0.2(1 + cos e)] mlo� 300 = 0.3732 m
= -0.2 sin 30°(3 rad/s) = -0.3 m/s Vr = r = -0.3 m/s Ve = riJ = (0.3732 m)(3 rad/s) = 1.120 m/s
Ans.
v = Yv; + vJ = Y( -0.3 m/s)2 + (1.120 m/s) = 1.16m F12-38. 30 m = r sin e
Vr = r = -(42.4260) m/s ve = rO = (42.4268) m/s v =^ YV; + vJ 2 = Y( -42.4268 )2 + (42.4268 ) o =^ 0.0333 rad/s Fl2-39. IT = 3SD (^) + SA o = 3VD + VA 0 = 3VD + 3 m/s VD = -1 m/s = 1 m/s i Fl2-40. SB + 2sA + 2h = I VB + 2VA =^0 6 + 2VA = 0 VA = -3 ft/s = 3 ft/s i Fl2-41. 3SA + SB = I 3VA + VA = 0
Ans.
Ans.
Ans.
Ans.
3VA + 1.5 = 0 VA = -0.5 m/s = 0.5 m/s i Ans. F12-42. IT = 4 SA + SF o = 4 VA + VF o = 4 VA + 3 m/s VA = -0.75 m/s = 0.75 m/s^ i Ans.
F12-43. SA + 2(SA^ -^ a) +^ (SA^ - sp) =^ I 4sA - SP = I + 2a 4VA - Vp = 0 4VA - 4 = 0 VA = 1 m/s F12-44. Sc + SB = ICED (SA^ - sc) +^ (SB^ - sc) +^ SB^ =^ IACDF SA + 2sB - 2sc =^ IACDF Thus Vc + VB = 0 VA + 2VB - 2vc = 0 Eliminating vc, VA + 4VB = 0 Thus, 4 ft/s + 4VB = 0 VB = -1 ft/s = 1 ft/s i F12-4S. VB = VA + VB/A 100i = 80j + VB/A VB/A = 100i - 80j VB/A = Y(VB/A);^ ,------0---------,;: +^ (VB/A); = Y(100 km/h)2^ + (-80 km/h) = 128 km/h
Ans. (1)
(2)
Ans.
Ans.
= 38.r� Ans. (VB/A)x 100 km/h F12-46. vB = VA + VB/A (-40Oi - 692.82j) = (650i) + V B/A VB/A = [-105Oi - 692.82j] km/h VB/A = Y(VB/A); + (^) (VB/A); = Y( 1050 km/h)2 + (692.82 km/h) = 1258 km/h Ans.
(VB/A)x 1050 km/h
F12-47. VB = VA + VB/A (5i + 8.660j)^ =^ (12.99i + 7.5j) +^ vB/A vB/A^ = [-7.99Oi^ + 1.160j] m/s VB/A = Y(-7.990 m/s)2^ + (1.160 m/s)
Ans.
= 8.074 m/s Ans. dAB = VB/At = (8.074 m/s)(4 s) = 32.3 m Ans.
6 8 6 PART I A L S O L U T I O N S A N D A N S W E R S
(15 m/s) Fn = (500 kg) (^) 200 m =^ 562.5 N I.E;^ =^ mat; E; = (500 kg)(1.5 m/s2) = 750 N F = YF,; + E;2 = \1(562.5 N)2^ �--� +- (750 N)2-� = 938 N
F13-13. ar = r - riP = 0 - (1.5 m + (8 m)sin 45°) = (-7.157 02) m/s I.Fz = maz; T COS 45° - m(9.81) = m(O) T =^ 13.87^ m I.Fr = mar; -(13.87m) sin 45° = m( -7.157 / F)
Ans.
8 = 1.17 rad/s Ans.
o = 27Ttl,=o.5 s = 7T rad/s 8 = 27T rad/s r = 0.6 sin 810=7T/4 rad =^ 0.4243 m ; = 0.6 (cos 8)Olo=7T/4 rad = 1.3329 m/s r = 0.6 (cos 8)0 - (sin8)0210=7T/4 rad =^ -1.5216 mN ar = r - riP = -1.5216 mN - (0.4243 m)(7T rad/s) = -5.7089 m/s
F13-15.
ae = r 8 + 2fe = 0.4243 m(27T radN)
r =.^ 50 2e( 20 ' 8 ) = 100e 20 ' 8 0=7T/6 1 rad
;: = 100( (2e200)0 + e20(O) )le=7T/6 rad
= 4.274 m/s
ar = r - rez = 4.274 m/s2 - 142.48 m(0.05 rad/s) = 3.918 mN ao = ':0+ 2;8 = 142.48 m(O.01 radN)
r = - 1 .2( sin280 + 2cos2(02) mNle=oo = -21.6 m/s Thus, ar = r - r02 = -21 .6 m/s2 - 0.6 m(-3 rad/s) = -27 m/s ao = r8 + 2f 8= 0.6 m(O) + 2(0)( -3 rad/s) = 0 I.Fe = mae; F^ - 0.2(9.81) N^ =^ 0.2 kg(O) F = 1.96 N Ans. Chapter 1 4 Fl4-1. (^) Tl + (^) I.UI-2 = (^) T 2
Fl4-2.
o + m(500 N)(0.5 m) - !(500 N/m)(0.5 m) = !(10 kg)V v = 5.24 m/s Ans. I.Fy = may; NA - 20(9.81) N cos 30° = 0 NA = 169.91 N TI + I.UI -2 =^ T 2 o + 300 N(lO m) - 0.3(169.91 N) (10 m)
Fl4-3. (^) Tl + 2:,Ul - 2 = T 2
Fl4-4.
Fl4-5.
0 + 2[ 115
m (600 + 2S2) N dS] - 100(9.81) N(15 m) = �(100 kg)V v = 12.5 m/s Ans. Tl +^ 2:,Ul-2 =^ T 2 �(1800 kg)(125 m/s)2 - [C50000N^ �^20 000 N)^ (400 m)] = �(1 800 kg)V v = 8.33 m/s Ans. Tl + (^) 2:, Ul- 2 = T 2 �(10 kg)(5 m/sf + 100 Ns' + [10(9.81) N] s' sin 30° -�(200 N/m)(s'f^ =^0 s' = 2.09 m s = 0.6 m + 2.09 m = 2.69 m Ans.
Fl4-6. (^) TA + 2:,UA-B = TB
Fl4-7.
Fl4-8.
Fl4-9.
Consider difference in cord length AC - BC, which is distance F moves. 0 + 10 Ib(V(3 ft)2^ + (4 ft)2 - 3 ft
VB =^ 16.0 ft/s �2:,Fx =^ max; 30 (�) = 20 a v = Vo + act
_- l"2^ ( 5 I ^2
a = 1 .2 m/s2 ---->
v = 0 + 1.2(4) = 4.8 m/s P = F · v = F (cos (J)v
�2:,Fx^ =^ max; lOs = 20 a a = 0.5s m/s2 ----> vdv = ads
1v 15m
o V dv = 0 0.5 s ds V = 3.536 m/s P =^ F · v = 10(5)(3.536) = 177 W (+i)2:,Fy =^ 0; Tl - 100 lb = 0 (+ i)2:,Fy =^ 0;
Tl = 100 lb
100 lb + 100 lb - T 2 = 0 T 2 = 200 lb
Ans.
Ans.
Ans.
FUNDAMENTAL PROBLEMS 6 8 7
Pout =^ TB • VB = (200 Ib)(3 ft/s) = (^) 1.091 hp Pout 1.091 hp fin^ =^ ----;- (^) 0.8 =^ 1.36 hp^ Ans. F14-10. (^) 2:,Fy' = may'; N - 20(9.81) cos 30° = 20(0) N = 169.91 N 2:,Fx' =^ max,; F - 20(9.81 ) sin 30° - 0.2(169.91 ) = 0 F = 132.08 N P = F · v = 132.08(5) = 660 W F14-11. + i 2:,Fy = may; T - 50(9.81)^ =^ 50(0)^ T^ =^ 490.5 N Pout = T · v = (^) 490.5(1.5) = 735.75 W fin = Pout (^) = 735.75 (^) = 920 W E; 0. Fl4-12. 2sA + sp = I 2 aA + ap = 0 2 aA + 6 = 0 aA = -3 m/s2^ = 3 m/s2^ i 2:,Fy = may; TA-490.5N = (50 kg)(3m/s2) TA =^ 640.5N Pout = T · v = (640.5N/2)(12) = 3843 W
Ans.
Ans.
Fl4-13. TA + VA =^ TB + VB o + 2(9.81)(1.5)^ =^ �(2)(VB)2^ +^0 VB = 5.42 m/s Ans.
T =^ 58.9 N^ Ans. Fl4-14. (^) TA + VA = (^) TB + VB � mAd + mghA =^ � mBvJ^ + mghB
= [�(2 kg)vJ] + [0] VB = 8.915 m/s = 8.92 m/s Ans.
FlS-6. Block B:
FlS-7.
( (^) + l ) (^) mVI (^) + J F dt = mVl
T = 7.95 1b Block A: C::.) (^) mVl + J F dt = (^) mVl o (^) + 7.95(5) - J.Lk(10)(5) = 3 �Ol(1) J.Lk = 0.
Ans.
Ans. (:::.) mAvA)1 +^ mB(vB)1 = mAvAh +^ mB(VBh (20(1 03) kg)(3^ m/s)^ + (1 5(1 03) kg)(^ -1 .5^ m/s) = (20(103) kg)(VA)l + (15(103) kg)(2 m/s) (VAh =^ 0.375^ m/s^ --+
J
11 (:::.) m(vBh + L^ F dt^ = m(vBh II (15(103) kg)(^ - 1.5^ m/s) +^ Favg(0.5^ s) = (^) (15(103) kg(2 m/s) Favg = 105(103) N = 105 kN
Ans.
Ans.
FlS-S. (^) (:::.) (^) mp[(vph1x + mcl(vch1x = (mp (^) + mc)vl
5[ 1O(�) ] (^) + 0 = (^) (5 (^) + 20)Vl Vl = 1.6 m/s
FlS-9. Tl +^ VI =^ Tl^ + Vz �mA(VA)r + (vg)1 =^ � mAvA)� + (Vg)l �(5)(5f^ +^ 5(9.81)(1.5) = �(5)(VA)? (vAh = 7.378 m/s (:::.) mA(vAh + mB(vB)l = (mA + mB)v 5(7.378) (^) + 0 = (5 + 8)v
Ans.
v = 2.84^ m/s^ Ans.
FlS-lO. (^) (:::.) mA(vAh + mB(vBh = mAvAh +^ mA(vB)l 0 + 0 = 10(vAh + 15(vBh (1) TI^ +^ VI =^ Tl + Vz � mA(VA)r +^ � mB(vB)l^ +^ (V.)l = (^) �mA(vA)� + (^) �mB(vB)� + (^) (V.h 0 + 0 + H5( 103)] (0.21) = �(10)( (^) vA)� + �(15)( vB)? + 0 5(VA)? + 7.5 (VB)� = 100 Solving Eqs. (^) (1) and (^) (2),
(2)
(VB)l =^ 2.31 m/s --+ Ans. (vAh =^ - 3.464^ m/s^ =^ 3.46^ m/s^ <-^ Ans.
FUNDAMENTAL PROBLEMS 6 8 9
FlS-ll. (t) (^) mA(VAh + mB(vBh = (mA + mB)vl o + 10(15) = (15 + 10)Vl Vl = 6 m/s T1 + V1 = Tl + Vl �(mA + mB)v?^ + (V.)l =^ � (mA + mB)vj + (Ve) 3
FlS-12. (^) (:::.) 0 + 0 = (^) mp(vp)x - mcVe o = (^) (20 kg) (^) (vp)x - (250 kg)ve (vp)x = 12.5 ve (1) Vp = Ve (^) + Vpje (vp») + (vp)yj = -ve i (^) + [(400 m/s) cos 300i
FlS-13. (^) (:::.) e = (VB)l - (vAh (VA)! - (VB)! (9 m/s) - (1 m/s) = 0. (8^ m/s)^ - (-2 m/s)
Ans.
Ans.
FlS-14. (^) (:::.) (^) mAvAh + mB(vB)l = mAvAh + mB(vBh [15(103) kg1(5 m/s)^ + [25(103)1(-7^ m/s) = (^) [15(103) kg1(vA) 1 + [25(103)1(vBh 15(vAh + 25(VB) 1 = - 100 (^) (1) Using the coefficient of restitution equation, (vBh - (vAh (:::.) e =^ - ,-----------,-----,-- (VA)I - (VB)I 0 6 =
(VB)l - (vAh
. (^5) m/s (^) - ( -7 m/s) (VB)l - (vAh = 7.2 (^) (2) Solving, (vBh =^ 0.2^ m/s --+ (VA)l = -7 m/s = 7 m/s <-
Ans. Ans.
6 9 0 PART I A L S O L U T I O N S A N D A N S W E R S
FlS-lS. Tl + V, = T 2 +^ V � m(VA)t + mg(hAh =^ � m(VA)� + mg(hA) H3�0 2 slug) (5 ft/s)2^ +^ (30 Ib)(lOft) = (^) H3�0 2 slug)(vA)� + 0 (v Ah =^ 25.87 ft/s^ +--- (:':-)^ mA(vAh + mB(vBh =^ mAvAh +^ mB(vBh (3�02 slug) (25.87 ft/s)^ +^0 = (^) (3�0 2 slug)(vA)3 + (^) (3�0 2 slug)(vBh 30(VA)3 + 80(VBh = 775.95 (^) (1)
(:':-) e^ =^ (vBh - (VA) (vAh - (vBh 0.6 (^) = (VB)3 - (VA) 25.87 ft/s - 0 (VB)3 - (vAh = 15.52 (2) Solving Eqs. (1) and (2), yields (VB)3 = 11.3 ft/s +--- (vAh =^ - 4.23 ft/s^ =^ 4.23 ft/s^ -->^ Ans. FlS-16. After collision: Tl + "LU1 -2 = T 2
�Ci. 2 ) (VA)� - 0.2(5)(?z) = 0 (vAh =^ 1.465 ft/s H3h0 2 ) (VB)� - 0.2(10)(lz) = 0 (vB)2 =^ 1.794 ftls "Lmv1 = "Lmv 3i. 2 (vAh +^0 =^ 3i. 2 (1.465)^ +^ 3;° 2 (1.794) (VA)1 =^ 5. e (^) = (vB) 2 - (vA) 2 1.794 - 1. (VA)1 - (VB)1 5.054 - 0 = 0.0652 Ans.
FlS-17. ( + i ) m[(vb)11y = (^) m[(vbhh
[(vbh1y = [(vb)1 1y = (20 m/s)sin30° = 10 m/s (^) i
(:::.) e^ = (vwh - [(vbh1x [(vbh1x - (vwh 0.75 =^ 0 - [(vb)21x (20 m/s)cos 30° - 0 [(vbh1x = - 1 2.99 m/s^ = 1 2.99 m/s^ +--- (vbh =^ V[(vbh1; +^ [(vbh1; = V( 12.99 m/s)2^ + (10 m/s) = 16.4 m/s Ans.
() (^) = tan-1( [(Vb)21y) = tan-1( 1 0 m/s^ ) [(vbh1x 12.99 m/s = 37.6°^ Ans. F1S-18. "Lm(vx)1 =^ "Lm(vx) 2 o + 0 = (^) 3i 2 (1) + (^) 3�^12 (VBx) 2 (vBxh = - 0.1818 ft/s "Lm( Vy)1 =^ "Lm(^ vyh 3i2 (3)^ +^0 =^0 +^ 3�^12 (VBy) 2 (VBy) 2 = 0.545 ft/s �------
= 0.575 ft/s^ Ans. F1S-19. Ho = "Lmvd; Ho = (^) [2(10)(�) l(4) - [2(10)m l(3) = 28 kg · m2/s ) F1S-20. Hp = "Lmvd; Hp = (^) [2(1 5) sin 30°1(2) - [2(15) cos 30°1(5) = -99.9 kg · m2/s^ =^ 99.9 kg · m2/s )
F1S-21. (^) (Hz)1 + "L J Mz dt = (Hzh 5(2)(1.5) + 5(1.5)(3) = 5v(1.5) v = 5 m/s Ans.
F1S-22. (Hz)1 + "L J Mz dt^ =^ (Hzh
o + (^) 14 s(10t)(�) (1.5)dt = 5v(1.5) v =^ 12.8 m/s^ Ans.
F1S-23. (^) (Hzh + "L J Mz dt = (Hzh
o + (^) 15 sO.9t2 dt = 2v(0.6) v =^ 31.2 m/s^ Ans.
F1S-24. (Hzh + "L J Mz dt = (Hzh
o + (^) 14 S8tdt + 2(10)(0.5)(4) =^ 2[10v(0.5) v =^ 10.4 m/s^ Ans.
6 9 2 PART I A L S O L U T I O N S A N D A N S W E R S
F16-10. VA = WOA X rA = (12 rad/s)k X (0.3 m)j = [-3.6i] m/s VB^ =^ VA^ +^ wAB X rB/A VBj = (-3.6 m/s)i
F16-12.
F16-13.
vd = (-60i) ft/s
Ans.
Ans. Ans.
Ans. Ans.
F16-14. (^) VB = WAB rB/A = 1 2(0.6) = 7.2 m/s �
F16-15.
Vc = 0 VB (^) 7. WBC = -- = - = 6 rad/s rB/IC 1. Vo 6 W =^ -- = - = 20 rad/s rO/lc 0. rA/IC =^ VO.32^ + 0.62^ = (^) 0.6708 m
VA = wrA/IC = 20(0.6708) = 13.4 m/s (J = 90° - cp = 90°- 26.57° = 63.4°d
Ans. Ans.
Ans.
Ans. Ans.
F16-16. The location of Ie can be determined using similar triangles. 0.5 - rCjlc rCjlc 3 1 .5 rCjIC^ =^ 0.1667 m W = --Vc = -- =1.5 9 rad/s rCjlc 0. Also, rO/lc = 0.3 - rCjlc = 0.3 - 0. = 0.1333 m.
Ans.
Vo = wro/lc = 9(0.1333) = (^) 1.20 m/s Ans. F16-17. VB = wrB/A = 6(0.2) = 1 .2 m/s rB/IC =^ 0.8 tan 60° =^ 1.3856 m rCjlc =^ cos 600^ 0.8^ = 1 6. m VB 1. WBC = -- =^3856 = 0.8660rad/s rB/IC 1. = 0.866 rad/s Then, Vc =^ WBC rCjlc = 0.8660(1.6) = 1.39 m/s
F16-18. (^) VB = wAB rB/A = 10(0.2) = 2 m/s Vc = WCD rCjD = wCD(0.2) ---->
F16-19.
rCjlc = 0.4 tan 30° = 0.2309 m WBC VB^2 =^ --rB/IC^ =^ 0 461 9 =^ 4.330 rad/s . = (^) 4.33 rad/s Vc = WBC rCjlc wCD(0.2) = 4.330(0.2309) WCD = 5 rad/s
W = -- = - = 2 rad/sVA^6 rA/IC 3 3B = 3A^ +^ a X rB/A - w2rB/A
aB = 4a - 12 0 = 3a + 1 1 a = -3.67 rad/s aB = -26.7 m/s
F16-20. (^) 3A = 30 + a X rA/O - w2rA/ = 1 .8i + (-6k) X (0.3i) - 1 22(0.3j) = 13.6i - 43.2j) m/s
Ans.
Ans.
Ans.
Ans.
Ans. Ans.
Ans.
Ans.
Fl6-21. (^) 3A =^ 3B + a^ X^ 'A/B - W2 'A/B 3i = aBj + (-ak) X 0.3j - 202(0.3j) 3i = 0.3ai + (aB - 120)j 3 = 0.3a a = 10 rad/s2^ Ans. 3A^ =^ 30 + a^ X^ 'A/o - w2'A/ = 3i + (- 10k)^ X^ (-0.6i) - 202(^ -0.6j) = 1243i + 6j} m/s2 Ans. rAIIC Fl6-22. (^3)
0.5 - rAI1C 1.5 rAIIC^ =^ 0.3333 m w = -- =VA^3 rAIIC 0 3333.^ =^ 9 rad/s 3A = 3C +^ a X^ 'A/c - w2'A/c 1.5i - (aA)nj = -0.75i + (adnj
Fl6-23. VB = W rBIA = 12(0.3) = 3.6 m/s VB 3. WBC = -- = - =rBIIC^ 3 rad/s
3B - a^ -^ X^ 'BIA - W 'BIA^2 = (-6k) X (0.3i) - 122(0.3i) = 1 -43.2i - 1 .8j} m/s 3C =^ 3B + aBC X 'C;B - WJC'C;B aci = (-43.2i - 1.8j)
Fl6-24. (^) VB = (^) W rBIA = 6(0.2) = 1.2 m/s -->
rBIIC =^ 0.8 tan 60°^ =^ 1.3856 m WBC = -- = -VB^ 1. rBIIC 1.3 58 6 = 0.8660 rad/s 3B - a^ -^ X^ 'BIA - W 'BIA^2 = ( -3k) X (0.2j) - 62(0.2j) = (^) [0.6i - 7.2j] m/s 3C = 3B + aBC X 'C;B - W2'C;B ac cos 300i + ac sin 300j
Ans.
Ans. Ans.
= (0.6i - 7.2j) + (aBC k (^) X 0.8i) - 0.86602(0.8i) 0.8660aci + 0.5ad = (0.8aBC - 7.2)j
FUNDAMENTAL PROBLEMS 6 9 3
0.8660ac = 0 0.5ac = 0.8aBC - 7. aC = 0 aBC = 9 rad/s
Chapter 1 7 F17-1. �"2,Fx = m(ac)x; 100(�) = 100a a = 0.8 m/s2 -->
Ans.
Ans.
(1)
(2) Ans. Ans.
Ans.
(1)
(2) Ans.
Ans.
Ans.
Ans.
0.2NA + 0.2NB = 100a^ (1)
FI7-13. (^) lc = rzml2 = rz(60)(32) = 45 kg · m
FI7-14. (^) C + 2: MA = (Mk)A; -200(0.3) = -100ac(0.3) - 4.5a 30ac + 4.5a = 60 (1) ac = ar = a(0.3) (2) a = 4044 rad/s2^ ac = 1.33 m/s2 ---->
FI7-15. (^) + j 2:Fy = m(ac)y; N - 20(9.S1) = (^0) N = 196.2 N � 2:Fx =^ m(acL; 0.5(196.2) = 20ao ao = 4.905 m/s2^ ----> C + 2: Mo = loa; 0.5(196.2)(004) - 100 = -1.Sa a = 33.S rad/s
FI7-16. (^) C + 2: MA = (Mk)A; 20(9.S1)sin30o (0.15) = O.lSa + (20ac)(0.15) O.lSa (^) + 3ac = 1 4. ac = ar = a(0.15) a = 23.36 rad/s2^ = 2304 radN ac = 3.504 m/s2^ = 3.50 m/s
FI7-17. (^) + j 2:Fy = m(ac)y;
N - 200(9.S1 ) = 0 N^ =^1962 N � 2:Fx =^ m(acL; T - 0.2(1 962) = 200ac C + 2: MA = (Mk)A; 450 - 0.2(1962)(1) = lSa (^) + 200ac(OA)
3C = 3A^ +^ £I' X^ rC/A - w2rC/A aci = - aAj (^) + ak X (OAj) - w2( -OAj) aci = OAai + (OAw2 - aA)j ac = OAa Solving Eqs. (1), (2), and (3), a = 1.15 rad/s2 ac = 00461 m/s T = 4S5^ N
Ans.
Ans.
Ans.
Ans. Ans.
(1)
(2)
(3)
Ans.
FUNDAMENTAL PROBLEMS 6 9 5
FI7-18. � 2: Fx = m(ac)x; 0 = 1 2(ac)x (ac)x = 0 C + 2:MA = (Mk)A -12(9.S1 )(0.3) = 1 2(ac)y(0.3) - rz(12)(0.6)2a 0.36a - 3.6(ac)y = 35.316 (1) w = O 3C =^ 3A^ +^ £I' X^ rC/A - w2rC/A (ac)y j = aAi + (-ak) (^) X (0.3i) - 0 (ac)y j = (aA)i - 0.3 j aA = 0 (ac)y = -0.3a Solving Eqs. (1) and (2) a = 24.5 rad/s (ac)y = -7.36 m/s2 (^) = 7.36 mN� Chapter 1 8 FI8-1. 10 = mk8 = So( 0042) = 12.S kg · m 2 Tl = 0 T 2 = (^)! low2 = (^)! (12.S)w2 = 6Aw S = Or = 20(27T)(0.6) = 247T m
o (^) + 50(247T) = 6Aw W = 24.3 rad/s FI8-2. (^) Tl = 0
= (^)! (3�^02 slug)(2.5w 2 )
Ans. (2)
Ans.
Ans.
Ans.
6 9 6
FIS-3.
FIS-4.
FIS-S.
PART I A L S O L U T I O N S A N D A N S W E R S
(VG)Z = wZrG/lC = wz(2.S) IG = fi mZZ = fi (SO)(sZ) = 104.17 kg · mz Tl =^0 T 2 = � m(vG)� + � IGw� = � (SO)[ wz(2.S) (^) F + �(104.17)w� = (^) 208.33w� Up = PSp = 600(3) = 1800 J Uw = -Wh = -SO(9.81)(2.S - 2) = -24S.2S J Tl + (^) "LU1-Z = Tz o + 1800 + (-24S.2S) = 208.33w� Wz = 2.732 rad/s = 2.73 rad/s T = � mvO 2 + (^) � 10wZ = (^) � (SO kg)(OAw)2 + (^) � [SO kg(0.3 m)2]wZ = 6.2Swz J Or, T = � llcwz = (^) � [SO kg(0.3 mf + SO kg(OA m)Z]wZ = 6.2Swz J So = Or = 10(21T rad)(OA m) = 81T m Tl + "LU1-Z =^ Tz TJ + P cos 30° So = T 2 o + (SO N)cos 300(81T m) = 6.2Sw2 J w = 13.2 rad/s 1.G (^) = .1. mZ2 = 12 .1.l (^) (30)( 3Z) = 22 S kg ' mZ Z. Tl =^0 Tz = � mVG Z^ + � IGWz = � (30)[w(0.S)j2 (^) + �(22.S)w2 = lSw 10 = IG + mdz = fi (30)(32) + 30(0.SZ) = 30 kg ' mz Or, T 2 = � 10wz = � (30)wz = lSwz Sl =^ Orl =^ 81T(0.S) =^ 41T m S 2 = Or 2 = 81T(1.S) = 121Tm
Up, = PZs 2 = 20(121T) = 2401T J UM =^ MO^ = 20[4(21T)] = 1601T J Tl + (^) "LU1-Z = Tz o + 1201T + 2401T + 1601T = lSwz w = 10044 rad/s = lOA rad/s
Ans.
Ans.
Ans.
FIS-6. Vo = wr = w(OA) 10 = mkoz = 20(0.32) = 1 .8 kg · m TI = 0 Tz = � mVG Z + � IGwz = � (20)[ w(OA) (^) F + �(1.8)wz = 2.Swz
Tl + "LU1-Z = Tz o + 2S00 = 2.Sw w = 31.62 rad/s = 31.6 rad/s Ans. FIS-7. VG = wr = w(0.3) IG =^ � mr2^ = (^) � (30)( 0.3Z) = (^) 1.3S kg · mZ TJ = 0 Tz = � m(vG)�^ +^ � IGw� = (^) � (30)[W 2 (0.3)]2 (^) + �(1.3S)wi = (^) 2.02Sw� (Vg)l = WYl = 0 (Vg)z =^ -WY2 =^ -30(9.81)(0.3)^ =^ -88.92 J Tl + � = T 2 + V 2 o + 0 = 2.02Sw1 + (-88.29) W 2 = 6.603 rad/s = 6.60 rad/s Ans. FIS-S. Vo = wro/lc = w(0.2) 10 = mkOZ = SO( 0.32) = 4.S kg ' mZ Tl =^0 T 2 = (^) � m(vo)i + �low�
= 3.2Sw (Vg)l = WYl = 0 (Vg)z = -Wyz = (^) -SO(9.81)(6 sin 30°) = -1471 .SJ TI + � = T 2 + V 2 o + 0 = 3.2Swi + (-1471.S) W 2 = 21.28 rad/s = 21.3 rad/s Ans.
6 9 8 PART I A L S O L U T I O N S A N D A N S W E R S
C +^ "LMo =^ 0; 9 - AI(0.45)^ =^0 AI =^ 20 N
l Mcdt = (Hc) 2 I, o + 20(5) = 10wAO.15)
F19-4. fA = mkl = 10 (0.082) = 0.064 kg · m
IB =^ mk�^ =^50 (0.152)^ =^ 1 .1 25 kg · m
= (^) 5.625(wBh Equating Eqs. (1) and (2), 500 - 1.28(wBh^ =^ 5.625(WB) 2
(WB) 2 =^ 72.41 rad/s^ =^ 72.4 rad/s^ Ans.
o + (150 N)(3 s) + FA(3 s) = (50 kg)(0.3w 2 )
o + (150 N)(0.2 m)(3 s) - FAO.3 m)(3 s) = [(50 kg)(0.175 mf]w 2 W 2 = 37.3 rad/s Ans. FA = 36.53 N Also,
o + [(150 N)(0.2 + 0.3) m](3 s) = (^) [(50 kg)(0.175 m)2 (^) + (50 kg)(0.3 mf]w 2 W 2 = 37.3 rad/s Ans.
o + NA(3 s) - (150 Ib)(3 s) = 0 NA = 150 lb
o + (25 Ib · ft)(3 s) - [0.15(150 Ib)(3 s)](0.5 ft) = W.� slug(1.25 ft)2]W 2 + w.� slug) [w 2 (1 ft)](l ft) W 2 = 3.46 rad/s Ans.
Chapter 1 2 12-1. v2^ =^ VB^ +^ 2ac(^ S - so) ac = 0.5625 m/s v = Vo + act t = 26.7 s 12-2. (^) v = 0 + (^1) (30) = 30 m/s S = 450 m 12-3. t = 3 s S = 22.5 ft 12-5. (^) dv = a dt v =^ (^6 t2 - 2t3/2)^ ft/s ds = (^) v dt S = (2t3 - � t5/2 + (^) 1 5) ft 12-6. h^ =^127 ft v =^ -90.6^ ft/s^ =^ 90.^6 ft^ /^ s^ � 12-7. (^) v = 13 m/s �s = 76 m t = 8.33 s 12-9. dt = dva v = Vr-2k-t-+-v--" 6 12-10. SA = 3200 ft 12-11. a = -24 m/s �s = -880 m ST = 91 2 m 12-13. �s = 2 m ST = 6 m vavg = 0.333 m/s (vsp)avg = 1 m/s 12-14. vavg = 0.222 m/s (vsp)avg = 2.22 m/s 12-15. d = 517 ft d = 616 ft 12-17. h = 5t' - 4.905(t,)2 + 1 0 h = 19.81t' - 4.905(t,)2 - 14. t' = 1. 682 m h = 4.54 m 12-18. S = 1708 m vavg = 22.3 m/s 12-19. al H = 1.06 m/s 12-21. VA = (^) ( 3 t^2 - 3t) ft/s VB = (4t3 - 8t) ft/s t = 0 s and = 1 s B stops
12-22.
12-23.
12-25.
12-26.
12-27. 12-29.
t = 0 s t = Yz s SABl r=4 s = 152 ft (ST)A = 41 ft (ST)B = 200 ft Choose the root greater than 10 m S = 11.9 m v = 0.250 m/s v = (20e-2r) m/s a = ( -40e-2r) m/s S = 1O(1 - e-2r) m
S = 2k In g + kv 1 hmax = 2k In ( 1 + :gYok^ 2) v =^ 4.11^ m/s a = 4.13 m/s v =^ 1.29^ m/s S Ir=6s = -27.0 ft v =^ 4.50t2 - 27.0t^ +^ 22. The times when the particle stops are t = 1 s and t = 5 s. Stot = 69.0 ft
12-31. 12-33.
12-34.
12-35.
12-37.
a = -kvoe-kr
t =
vf In
2g vf - v Distance between motorcycle and car 5541.67 ft t = 77.6 s Sm = 3.67(1W (^) ft a = 80 km/s t = 6.93 ms vavg =^10 m/s^ <- aavg = 6 m/s ball A h = vot' - !r t,2 2 VA = Vo - gt' h = vo (t' - t) - !r et' - t)2 2 VB = Vo - get' - t) 2vo + gt t' = ----''----- 2g--=--
699