Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fundemental Problems-Advanced Engineering Dynamics-Assignment Solution, Exercises of Engineering Dynamics

This is solution to problems of Advanced Engineering Dynamics. Fundamental, Problems, Solution, Answer, Time, Acceleration, Velocity, Displacement, Magnitude, Particle, Area

Typology: Exercises

2011/2012

Uploaded on 07/19/2012

lakshanya
lakshanya 🇮🇳

4.4

(25)

100 documents

1 / 45

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Fundamental Problems
Partial Solutions And Answers
Chapter 12
Fl2-1. v = Vo + act
10 = 35 + ac(15)
ac = -1.67 mjs2 = 1.67 mjs2
Fl2-2. s = So + vot + �act2
o = 0 + 15t + (-9.81)t2
t = 3.06 s
F12-3. ds = v dt
is ds = it (4t -3t2)dt
s = (2t2 - t3) m
s = 2(42) - 43
= -32 m = 32 m�
Fl2-4. a = '!if = 1ft (0.5t3 -8t)
a = (1.5t2 - 8) mjs2
When t = 2 s,
a = 1.5(22) - 8 = -2 mjs2 = 2mjs2
F12-S. v = 'fit = 1ft (2t2 -8t + 6) = (4t -8) mjs
v = 0 = (4t -8)
Ans.
Ans.
Ans.
Ans.
t=2s A�
F12-6.
slt=o = 2(02) - 8(0) + 6 = 6 m
slt=2 = 2(22) - 8(2) + 6 = -2 m
slt=3 = 2(32) - 8(3) + 6 = 0 m
(ilshot = 8m
+ 2m = 10 m
j vdv = j ads
Iv v dv =
r
(10 -0.2s)ds
5 m/s
J
o
v = (V2 0s -0.2s2 + 25) mjs
At s = 10 m,
Ans.
v = V2 0(1O) -0.2(102) + 25 = 14.3 mjs Ans.
F12-7. v= j(4t2-2)dt
v = � t3 -2t + e1
680
s = j (� t3 -2t + el) dt
s = t4 - t2 + elt + e2
t = 0, s = -2, e2 = -2
t = 2, s = -20, e1 = -9.67
t = 4, s = 28.7 m
F12-S. a = v'flf
= (20 -0.05s2)(-0.ls)
At s = 15 m,
a = -13.1 mjs2 = 13.1 mjs2
F12-9. v = 'fit = 1ft ( 0.5t3) = 1.5t2
vlt=6 s = 1.5(62) = 54 mjs
v = 'fit = 1ft (108) = 0
F12-10. ds = v dt
1" ds = it (-4t + 80) dt
s = -2t2 + 80t
s = -2(2of + 80(20) = 800 ft
Ans.
Ans.
Ans.
a = !b! = !L (-4t + 80) = -4 ftjs2 = 4 ftjs2
dt dt
Also,
a = Ll.v = 0 -80 ftfs = -4 ftjs2
Ll.t 20 s 0
F12-11. ads = v dv
a = � = 0.25sfs (0.25s) = 0.0625s
als=40m
= 0.0625(40 m) = 2.5 mjs2 -->
F12-12. 0,,; t < 5 s,
v = 'fit = 1ft (3t2) = (6t) mjs
vlt=5 s = 6(5) = 30 mjs
5 s < t ,,; 10 s,
v = 'fit = 1ft (30t - 75) = 30 mjs
v = Ll.s = 225 m -75 m = 30 mjs
Ll.t 10 m -5 m
o ,,; t < 5 s,
a = '!if = 1ft (6t) = 6 mN
5 s < t ,,; 10 s,
a = '!if = 1ft (30) = 0
0,,; t < 5s,a = ilvjilt = 6mjs2
5 s < t ,,; 10 s, a = ilvj M = 0
docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d

Partial preview of the text

Download Fundemental Problems-Advanced Engineering Dynamics-Assignment Solution and more Exercises Engineering Dynamics in PDF only on Docsity!

F u n d a m e nta l P ro b l e m s

P a rti a l S o l uti o n s A n d Answers

Chapter 1 2 Fl2-1. v = Vo + act 10 = 35 + ac(15) ac = -1.67 mjs2^ = 1.67 mjs2 �

Fl2-2. s = So + vot + �act o = 0 + 15t + � (-9.81)t t = 3.06 s

F12-3. ds = v dt

isds = i

t (4t - 3t2)dt

s = (2t2 - t3) m s = 2(42) - 43 = -32 m = 32 m �

Fl2-4. (^) a = (^) '!if = (^) 1ft (0.5t3 - 8t)

a = (1.5t2 - 8) mjs When t = 2 s, a = 1.5(22) - 8 = -2 mjs2 = 2 mjs2^ �

F12-S. v = 'fit = 1ft (2t2 - 8t^ +^ 6) = (4t - 8) mjs v = 0 = (4t - 8)

Ans.

Ans.

Ans.

Ans.

t = 2 s A�

F12-6.

slt=o = 2(02) - 8(0) + 6 = 6 m slt= 2 =^ 2(22) - 8(2) + 6 = -2 m slt= 3 = 2(32) - 8(3)^ +^ 6 = 0 m (ilshot = 8 m + 2 m = 10 m

j v dv = j a ds

I

v

v dv = r (10 - 0.2s)ds

5 m/s^ Jo v = ( V20s - 0.2s2^ + 25) mjs At s =^ 10 m,

Ans.

v =^ V20(1O) - 0.2(102) + 25 =^ 14.3 mjs Ans.

F12-7. v = j(4t2 - 2) dt

v = � t3 - 2t + e 6 8 0

s = j (� t3 - 2t + el ) dt

s = � t4 - t2^ + elt + e

t = 0, s = -2, e 2 = - t = 2, s = -20, e 1 = -9. t = 4, s = 28.7 m F12-S. a = v 'flf = (20 - 0.05s2)(-0.ls) At s = 15 m, a = -13.1 mjs2 = 13.1 mjs2^ � F12-9. v = 'fit = 1ft ( 0.5t3) = 1.5t vlt=6 s = 1.5(62) = 54 mjs v = 'fit = 1ft (108) = 0 F12-10. ds = v dt 1" ds = i

t (-4t + 80) dt s = -2t2^ + 80t s = -2(2of + 80(20) = 800 ft

Ans.

Ans.

Ans.

a = !b!dt = !Ldt^ (-4t + 80) = -4 ftjs2 = 4 ftjs2^ � Also, a = Ll. vLl.t = 0 20 - s 80 ftfs 0 = -4 ftjs F12-11. a ds = v dv a = � = 0.25sfs (0.25s) = 0.0625s als=40m = (^) 0.0625(40 m) = 2.5 mjs2 (^) --> F12-12. 0 ,,; t < 5 s, v = 'fit = 1ft (3t2) = (6t) mjs vlt=5 s = 6(5) = 30 mjs 5 s < t ,,; 10 s, v = 'fit = 1ft (30t - 75) = 30 mjs v = Ll.Ll.ts = 22510 mm^ - -^755 m^ m^ = 30 mjs o ,,; t < 5 s, a = '!if = 1ft (6t) = 6 mN 5 s < t ,,; 10 s, a = '!if = 1ft (30) = 0 0 ,,; t < 5 s, a = ilvjilt = 6 mjs 5 s < t ,,; 10 s, a = ilvj M = 0

F12-13. 0 � t < 5 s,

dv =^ a dt l

v dv = 1

20 dt v = (20t) m/s v = 20(5) = 100 m/s 5 s < t � t', (�) dv = a dt lv dv = 11 -10 dt 100 mls 5s v = (150 - 1Ot) mis, o = 150 - lOt' t' = 15 s Also, Liv = 0 = Area under the a-t graph 0 = (20 mN)(5 s) + [-(10 m/s)(t' - 5) s] t' = 15 s Fl2-14. 0 � t � 5 s,

ds = v dt sl& =^ 15t21b s = (15t2) m

r t

io^

ds =

io^

30t dt

s = 15(52) =^ 375 m 5 s < t � 15 s, ds = v dt; r^ ds = 11 (-15t + 225)dt

i 375 m 5s

S = (-7.5t2^ + 225t - 562.5) m s = (-7.5)(15)2^ + 225(15) - 562.5 m = 1125 m Ans. Also, Lis = Area under the v-t graph = (^) � (150 m/s)(15 s) = 1 125 m

Fl2-15. l

x dx = 1

32t dt

x = (16t2) m

lY dy = 11 S dt t = (^) � Substituting Eq. (2) into Eq. (1), i =^ 4x

Fl2-16. Y = 0.75(St) = 6t Vx = x = % = 1ft (St) = S m/s ->

Ans.

Ans.

FUNDAMENTAL PROBLEMS 6 8 1

Vy = y = '!l; = 1ft (6t) = 6 m/s i The magnitude of the particle's velocity is v = Vv; + v; = V(S m/s)2 + (6 m/s) = 10 m/s Ans. F12-17. y = (4t2) m Vx = x = 1ft (4t^4 ) = (16t3) m/s -> Vy =^ Y^ =^ 1ft (4t2) = (St) m/s i When t = 0.5 s, v = Vv; + v; =^ V(2 m/s)2^ +^ (4 m/s) = 4.47 m/s Ans. ax = Vx = 1ft (16t3) = (4St2) mN ay = Vy = 1ft (St) = S m/s When t =^ 0.5 s, a =^ Va; + a; =^ V(12 m/s2f + (S mN) = 14.4 m/s2 Ans. F12-18. y = 0.5x y = 0.5.: Vy = t When t = 4 s, Vx = 32 m/s Vy = 16 m/s v = Vv; + v; =^ 35.S m/s ax = Vx = 4t ay = Vy = 2t When t = 4 s, ax = 16 m/s2^ ay = S m/s

Ans.

a = Va; + a; = V162^ + S2^ = 17.9 mN Ans. F12-19. Y = (t4) m Vx = x = (4t) m/s When t = 2 s, Vx = S m/s Vy = 32 m/s v = Vv; + v; = 33.0 m/s ax =^ Vx = 4 m/s ay =^ Vy =^ (12t2) m/s When t = 2 s, ax = 4 m/s2 ay = 4S m/s

Ans.

a = Va; + a; = V42^ + 4S2^ = 4S.2 m/s2 Ans.

F12-30.

Fl2-31.

tan 8 = ¥X = fx (f4 x2) = 12 x

8 = tan-1(i2 x) I

x�lO ft

= tan-1^ (f¥) = 39.81° = 39.8° Ans.

p =^ [1 +^ �dY/d:)2P/^2 = [1^ +^ (�4P/2^1

Id y/dx I 1121 x�lO ft = 26.468 ft _ (^) v2 _ (20 ft/S)2^ _ 2

an - p - 26.468 ft - 15.11 ft/s

a = �--�--------� V(at)2 +^ (a,i^ = V(6 ft/S2^ f^ + (15.11 ft/S2) = 16.3 ft/s2^ Ans.

(aB)t = -O.OO1s = (-0.001)(300 m)(I rad) mN

= -0.4712 m/s

v dv = at ds

t Bv dv = t^ �^ �^. ;01s ds

J 2 5 m/s^ Jo

VB = 20.07 m/s VB2^ (20.07 m/s? (^2)

(aB)n = p = 300 m = 1.343 m/s

aB = V(aB)t2 + (aB)n

= V( -0.4712 m/s2)2^ + ( 1.343 m/s2) = 1.42 m/s2^ Ans.

Fl2-32. at ds = v dv

at = v !flf = (0.2s)(0.2) = (0.04s) m/s

at = 0.04(50 m) = 2 m/s

v = 0.2 (50 m) = 10 m/s

a = - =v2^ (10 m/s)2= 0.2 m/s n p (^) 500 m a = Va? + a� = V(2 m/s2)2 + (0.2 mN) = 2.01 m/s2 Ans.

Fl2-33. vr = r = 0

ve = r8 = (4008) ft/s v = Vv; + vJ 55 ft/s = V02^ �^ --+ [(4008) ft/S]2--�-------,;: 8 = 0.1375 rad/s Ans.

FUNDAMENTAL PROBLEMS 6 8 3

F12-34. r = 0.lt3It�1.5 s = 0.3375 m r = 0.3t2It�1.5 s = 0.675 m/s r = (^) 0.6tlt�1.5 s = 0.900 m/s 8 = (^) 4t3/2It�1.5 s = 7.348 rad 8 =^ 6tl/2It�1.5 s = 7.348 rad/s 8 =^ 3t-l/2It�1.5 s = 2.449 rad/s Vr = r = 0.675 m/s ve = r8 = (0.3375 m)(7.348 rad/s) = 2.480 m/s ar = r - r8 2 = (0.900 mN) - (0.3375 m)(7.348 rad/s) = -17.325 m/s ae = r8 + 2i8 = (0.3375 m)(2.449 rad/s2)

  • 2(0.675 m/s)(7.348 rad/s)^ =^ 10.747 m/s v = VVr 2 + Ve

= V(0.675 m/s)2 + (2.480 m/s)

= 2.57 m/s a = � = V( - 17.325 m/s2)2 + ( 10.747 m/s2)

Ans.

= 20.4 m/s2^ Ans. F12-3S. r = 28 r = 28 r = 28 At 8 = 1T/4 rad, r = 2(*) = I r = 2(3 rad/s) = 6 ft/s r = 2(1 rad/s) = 2 ftN

a,. = r - riP = 2 ftN - (I ft)(3 rad/s)

= -12.14 ft/S ae = r8 + 2rO = (I ft)(1 rad/s2) + 2(6 ft/s)(3 rad/s) = (^) 37.57 ft/S

a = Va,.^2 + ae

= V(-12.14 ft/s2)2 + (37.57 ft/S2) = 39.5 ftN Ans.

6 8 4 PART I A L S O L U T I O N S A N D A N S W E R S

Fl2-36. r =^ eO r = eOiJ r = e°(j + eOiJ ar = r - riJ2^ = (e°(j + eOiJ2) - (eOiJ2 = e1T/4(4) = 8.77 m/s2^ Ans. ao = rO + U O =^ (e°(j) + (2(e°iJ)iJ)^ =^ eO(O + 2(2) = e1T/4(4 + 2(2)2) = 26.3 m/s

Fl2-37. r = [0.2(1 + cos e)] mlo� 300 = 0.3732 m

r = [ -0.2 (sin e)O 1 m/sle� 30 °

= -0.2 sin 30°(3 rad/s) = -0.3 m/s Vr = r = -0.3 m/s Ve = riJ = (0.3732 m)(3 rad/s) = 1.120 m/s

Ans.

v = Yv; + vJ = Y( -0.3 m/s)2 + (1.120 m/s) = 1.16m F12-38. 30 m = r sin e

r = (��n�) = (30 csc e) m

r = (30 csc e)le�450 = 42.426 m

r = -30 csc e ctn e elo�450 = - (42.4260) m/s

Vr = r = -(42.4260) m/s ve = rO = (42.4268) m/s v =^ YV; + vJ 2 = Y( -42.4268 )2 + (42.4268 ) o =^ 0.0333 rad/s Fl2-39. IT = 3SD (^) + SA o = 3VD + VA 0 = 3VD + 3 m/s VD = -1 m/s = 1 m/s i Fl2-40. SB + 2sA + 2h = I VB + 2VA =^0 6 + 2VA = 0 VA = -3 ft/s = 3 ft/s i Fl2-41. 3SA + SB = I 3VA + VA = 0

Ans.

Ans.

Ans.

Ans.

3VA + 1.5 = 0 VA = -0.5 m/s = 0.5 m/s i Ans. F12-42. IT = 4 SA + SF o = 4 VA + VF o = 4 VA + 3 m/s VA = -0.75 m/s = 0.75 m/s^ i Ans.

F12-43. SA + 2(SA^ -^ a) +^ (SA^ - sp) =^ I 4sA - SP = I + 2a 4VA - Vp = 0 4VA - 4 = 0 VA = 1 m/s F12-44. Sc + SB = ICED (SA^ - sc) +^ (SB^ - sc) +^ SB^ =^ IACDF SA + 2sB - 2sc =^ IACDF Thus Vc + VB = 0 VA + 2VB - 2vc = 0 Eliminating vc, VA + 4VB = 0 Thus, 4 ft/s + 4VB = 0 VB = -1 ft/s = 1 ft/s i F12-4S. VB = VA + VB/A 100i = 80j + VB/A VB/A = 100i - 80j VB/A = Y(VB/A);^ ,------0---------,;: +^ (VB/A); = Y(100 km/h)2^ + (-80 km/h) = 128 km/h

Ans. (1)

(2)

Ans.

Ans.

e = tan-1[

(VB/A)Y]

= tan-1(^

80 km/h )

= 38.r� Ans. (VB/A)x 100 km/h F12-46. vB = VA + VB/A (-40Oi - 692.82j) = (650i) + V B/A VB/A = [-105Oi - 692.82j] km/h VB/A = Y(VB/A); + (^) (VB/A); = Y( 1050 km/h)2 + (692.82 km/h) = 1258 km/h Ans.

_l [(VB/A)Y] _1 (692.82 km/h)

e = tan -- = tan = 33.4° ;p-

(VB/A)x 1050 km/h

F12-47. VB = VA + VB/A (5i + 8.660j)^ =^ (12.99i + 7.5j) +^ vB/A vB/A^ = [-7.99Oi^ + 1.160j] m/s VB/A = Y(-7.990 m/s)2^ + (1.160 m/s)

Ans.

= 8.074 m/s Ans. dAB = VB/At = (8.074 m/s)(4 s) = 32.3 m Ans.

6 8 6 PART I A L S O L U T I O N S A N D A N S W E R S

(15 m/s) Fn = (500 kg) (^) 200 m =^ 562.5 N I.E;^ =^ mat; E; = (500 kg)(1.5 m/s2) = 750 N F = YF,; + E;2 = \1(562.5 N)2^ �--� +- (750 N)2-� = 938 N

F13-13. ar = r - riP = 0 - (1.5 m + (8 m)sin 45°) = (-7.157 02) m/s I.Fz = maz; T COS 45° - m(9.81) = m(O) T =^ 13.87^ m I.Fr = mar; -(13.87m) sin 45° = m( -7.157 / F)

Ans.

8 = 1.17 rad/s Ans.

F13-14. 8 = 7Tt^21 ,=o.5 s = (7T/4) rad

o = 27Ttl,=o.5 s = 7T rad/s 8 = 27T rad/s r = 0.6 sin 810=7T/4 rad =^ 0.4243 m ; = 0.6 (cos 8)Olo=7T/4 rad = 1.3329 m/s r = 0.6 (cos 8)0 - (sin8)0210=7T/4 rad =^ -1.5216 mN ar = r - riP = -1.5216 mN - (0.4243 m)(7T rad/s) = -5.7089 m/s

F13-15.

ae = r 8 + 2fe = 0.4243 m(27T radN)

  • 2(1.3329 m/s)(7T rad/s) = 1 1 .0404m/s I.Fr = mar; Fcos 45° - N cos 45° -0.2(9.81)cos 45° = 0.2(-5.7089) I.Fo =^ mao; F sin45° + N sin45° -0.2(9.81)sin 45° = 0.2(11.0404) N = 2.37 N F^ =^ 2.72 N^ Ans.

r = 50e2elo=7T/6 rad = [50e2(7T/6) 1 m = 142.48 m

r =.^ 50 2e( 20 ' 8 ) = 100e 20 ' 8 0=7T/6 1 rad

= [100e2(7T/6)(0.05) 1 = 14.248 m/s

;: = 100( (2e200)0 + e20(O) )le=7T/6 rad

= 100[ 2e2(7r/6) (0.052) + e2(7r/6)(0.01) 1

= 4.274 m/s

ar = r - rez = 4.274 m/s2 - 142.48 m(0.05 rad/s) = 3.918 mN ao = ':0+ 2;8 = 142.48 m(O.01 radN)

  • 2(14.248 m/s)(0.05 rad/s) = 2.850 mN I.Fr = mar; Fr = (2000 kg)(3.918 m/s2) = 7836.55 N I.Fe =^ mae; Fe = (2000 kg)(2.850 m/s2) = 5699.31 N F = \IF? + Fl = (^) \1(7836.55 N)2 (^) + (5699.31 N) = 9689.87 N = 9.69 kN F13-16. r = (0.6 cos 28) mlo=oo = [0.6 cos 2COO)] m = 0.6 m f = (-1.2 sin2(0) m/slo=oo

= [ -1.2 sin2(00)( -3) 1 m/s = 0

r = - 1 .2( sin280 + 2cos2(02) mNle=oo = -21.6 m/s Thus, ar = r - r02 = -21 .6 m/s2 - 0.6 m(-3 rad/s) = -27 m/s ao = r8 + 2f 8= 0.6 m(O) + 2(0)( -3 rad/s) = 0 I.Fe = mae; F^ - 0.2(9.81) N^ =^ 0.2 kg(O) F = 1.96 N Ans. Chapter 1 4 Fl4-1. (^) Tl + (^) I.UI-2 = (^) T 2

Fl4-2.

o + m(500 N)(0.5 m) - !(500 N/m)(0.5 m) = !(10 kg)V v = 5.24 m/s Ans. I.Fy = may; NA - 20(9.81) N cos 30° = 0 NA = 169.91 N TI + I.UI -2 =^ T 2 o + 300 N(lO m) - 0.3(169.91 N) (10 m)

  • 20(9.81)N (10 m) sin 30° = !(20 kg)V v = 12.3 m/s Ans.

Fl4-3. (^) Tl + 2:,Ul - 2 = T 2

Fl4-4.

Fl4-5.

0 + 2[ 115

m (600 + 2S2) N dS] - 100(9.81) N(15 m) = �(100 kg)V v = 12.5 m/s Ans. Tl +^ 2:,Ul-2 =^ T 2 �(1800 kg)(125 m/s)2 - [C50000N^ �^20 000 N)^ (400 m)] = �(1 800 kg)V v = 8.33 m/s Ans. Tl + (^) 2:, Ul- 2 = T 2 �(10 kg)(5 m/sf + 100 Ns' + [10(9.81) N] s' sin 30° -�(200 N/m)(s'f^ =^0 s' = 2.09 m s = 0.6 m + 2.09 m = 2.69 m Ans.

Fl4-6. (^) TA + 2:,UA-B = TB

Fl4-7.

Fl4-8.

Fl4-9.

Consider difference in cord length AC - BC, which is distance F moves. 0 + 10 Ib(V(3 ft)2^ + (4 ft)2 - 3 ft

VB =^ 16.0 ft/s �2:,Fx =^ max; 30 (�) = 20 a v = Vo + act

_- l"2^ ( 5 I ^2

  1. 2 S^ U^ gJ^ VB

a = 1 .2 m/s2 ---->

v = 0 + 1.2(4) = 4.8 m/s P = F · v = F (cos (J)v

= 1 1 5 W

�2:,Fx^ =^ max; lOs = 20 a a = 0.5s m/s2 ----> vdv = ads

1v 15m

o V dv = 0 0.5 s ds V = 3.536 m/s P =^ F · v = 10(5)(3.536) = 177 W (+i)2:,Fy =^ 0; Tl - 100 lb = 0 (+ i)2:,Fy =^ 0;

Tl = 100 lb

100 lb + 100 lb - T 2 = 0 T 2 = 200 lb

Ans.

Ans.

Ans.

FUNDAMENTAL PROBLEMS 6 8 7

Pout =^ TB • VB = (200 Ib)(3 ft/s) = (^) 1.091 hp Pout 1.091 hp fin^ =^ ----;- (^) 0.8 =^ 1.36 hp^ Ans. F14-10. (^) 2:,Fy' = may'; N - 20(9.81) cos 30° = 20(0) N = 169.91 N 2:,Fx' =^ max,; F - 20(9.81 ) sin 30° - 0.2(169.91 ) = 0 F = 132.08 N P = F · v = 132.08(5) = 660 W F14-11. + i 2:,Fy = may; T - 50(9.81)^ =^ 50(0)^ T^ =^ 490.5 N Pout = T · v = (^) 490.5(1.5) = 735.75 W fin = Pout (^) = 735.75 (^) = 920 W E; 0. Fl4-12. 2sA + sp = I 2 aA + ap = 0 2 aA + 6 = 0 aA = -3 m/s2^ = 3 m/s2^ i 2:,Fy = may; TA-490.5N = (50 kg)(3m/s2) TA =^ 640.5N Pout = T · v = (640.5N/2)(12) = 3843 W

Ans.

Ans.

fin = --;-^ Paut^ = o:s^3843 = 4803.75 W = 4.80 kW Ans.

Fl4-13. TA + VA =^ TB + VB o + 2(9.81)(1.5)^ =^ �(2)(VB)2^ +^0 VB = 5.42 m/s Ans.

  • i 2:,Fn =^ man; T - 2(9.81) = 2 (--(5.42)2^ )

T =^ 58.9 N^ Ans. Fl4-14. (^) TA + VA = (^) TB + VB � mAd + mghA =^ � mBvJ^ + mghB

[�(2 kg)(l m/s)2] +^ [2 (9.81) N(4 m)]

= [�(2 kg)vJ] + [0] VB = 8.915 m/s = 8.92 m/s Ans.

  • i 2:,Fn = (^) man; NB - 2(9.81)N = (2 kg) (^ (8.915 m/s)2) 2 m NB = 99.1 N Ans.

FlS-6. Block B:

FlS-7.

( (^) + l ) (^) mVI (^) + J F dt = mVl

o + 8(5) - T(5) = 3 �. 1 (1)

T = 7.95 1b Block A: C::.) (^) mVl + J F dt = (^) mVl o (^) + 7.95(5) - J.Lk(10)(5) = 3 �Ol(1) J.Lk = 0.

Ans.

Ans. (:::.) mAvA)1 +^ mB(vB)1 = mAvAh +^ mB(VBh (20(1 03) kg)(3^ m/s)^ + (1 5(1 03) kg)(^ -1 .5^ m/s) = (20(103) kg)(VA)l + (15(103) kg)(2 m/s) (VAh =^ 0.375^ m/s^ --+

J

11 (:::.) m(vBh + L^ F dt^ = m(vBh II (15(103) kg)(^ - 1.5^ m/s) +^ Favg(0.5^ s) = (^) (15(103) kg(2 m/s) Favg = 105(103) N = 105 kN

Ans.

Ans.

FlS-S. (^) (:::.) (^) mp[(vph1x + mcl(vch1x = (mp (^) + mc)vl

5[ 1O(�) ] (^) + 0 = (^) (5 (^) + 20)Vl Vl = 1.6 m/s

FlS-9. Tl +^ VI =^ Tl^ + Vz �mA(VA)r + (vg)1 =^ � mAvA)� + (Vg)l �(5)(5f^ +^ 5(9.81)(1.5) = �(5)(VA)? (vAh = 7.378 m/s (:::.) mA(vAh + mB(vB)l = (mA + mB)v 5(7.378) (^) + 0 = (5 + 8)v

Ans.

v = 2.84^ m/s^ Ans.

FlS-lO. (^) (:::.) mA(vAh + mB(vBh = mAvAh +^ mA(vB)l 0 + 0 = 10(vAh + 15(vBh (1) TI^ +^ VI =^ Tl + Vz � mA(VA)r +^ � mB(vB)l^ +^ (V.)l = (^) �mA(vA)� + (^) �mB(vB)� + (^) (V.h 0 + 0 + H5( 103)] (0.21) = �(10)( (^) vA)� + �(15)( vB)? + 0 5(VA)? + 7.5 (VB)� = 100 Solving Eqs. (^) (1) and (^) (2),

(2)

(VB)l =^ 2.31 m/s --+ Ans. (vAh =^ - 3.464^ m/s^ =^ 3.46^ m/s^ <-^ Ans.

FUNDAMENTAL PROBLEMS 6 8 9

FlS-ll. (t) (^) mA(VAh + mB(vBh = (mA + mB)vl o + 10(15) = (15 + 10)Vl Vl = 6 m/s T1 + V1 = Tl + Vl �(mA + mB)v?^ + (V.)l =^ � (mA + mB)vj + (Ve) 3

�(15^ + 10) (61) + 0 = 0 + H 1O( 103) lS�ax

smax = 0.3 m = 300 mm

FlS-12. (^) (:::.) 0 + 0 = (^) mp(vp)x - mcVe o = (^) (20 kg) (^) (vp)x - (250 kg)ve (vp)x = 12.5 ve (1) Vp = Ve (^) + Vpje (vp») + (vp)yj = -ve i (^) + [(400 m/s) cos 300i

  • (400^ m/s) sin^ 300j (vpLi + (vp)yj = (346.41 - ve)i + 200j (vp)x = 346.41 - ve (vp)y = 200^ m/s (vpL = 320.75 m/s Ve = 25.66 m/s Vp =^ V (vp); + (vp); = V (^) (320.75 m/s)l + (^) (200 m/s)l = 378 m/s

FlS-13. (^) (:::.) e = (VB)l - (vAh (VA)! - (VB)! (9 m/s) - (1 m/s) = 0. (8^ m/s)^ - (-2 m/s)

Ans.

Ans.

FlS-14. (^) (:::.) (^) mAvAh + mB(vB)l = mAvAh + mB(vBh [15(103) kg1(5 m/s)^ + [25(103)1(-7^ m/s) = (^) [15(103) kg1(vA) 1 + [25(103)1(vBh 15(vAh + 25(VB) 1 = - 100 (^) (1) Using the coefficient of restitution equation, (vBh - (vAh (:::.) e =^ - ,-----------,-----,-- (VA)I - (VB)I 0 6 =

(VB)l - (vAh

. (^5) m/s (^) - ( -7 m/s) (VB)l - (vAh = 7.2 (^) (2) Solving, (vBh =^ 0.2^ m/s --+ (VA)l = -7 m/s = 7 m/s <-

Ans. Ans.

6 9 0 PART I A L S O L U T I O N S A N D A N S W E R S

FlS-lS. Tl + V, = T 2 +^ V � m(VA)t + mg(hAh =^ � m(VA)� + mg(hA) H3�0 2 slug) (5 ft/s)2^ +^ (30 Ib)(lOft) = (^) H3�0 2 slug)(vA)� + 0 (v Ah =^ 25.87 ft/s^ +--- (:':-)^ mA(vAh + mB(vBh =^ mAvAh +^ mB(vBh (3�02 slug) (25.87 ft/s)^ +^0 = (^) (3�0 2 slug)(vA)3 + (^) (3�0 2 slug)(vBh 30(VA)3 + 80(VBh = 775.95 (^) (1)

(:':-) e^ =^ (vBh - (VA) (vAh - (vBh 0.6 (^) = (VB)3 - (VA) 25.87 ft/s - 0 (VB)3 - (vAh = 15.52 (2) Solving Eqs. (1) and (2), yields (VB)3 = 11.3 ft/s +--- (vAh =^ - 4.23 ft/s^ =^ 4.23 ft/s^ -->^ Ans. FlS-16. After collision: Tl + "LU1 -2 = T 2

�Ci. 2 ) (VA)� - 0.2(5)(?z) = 0 (vAh =^ 1.465 ft/s H3h0 2 ) (VB)� - 0.2(10)(lz) = 0 (vB)2 =^ 1.794 ftls "Lmv1 = "Lmv 3i. 2 (vAh +^0 =^ 3i. 2 (1.465)^ +^ 3;° 2 (1.794) (VA)1 =^ 5. e (^) = (vB) 2 - (vA) 2 1.794 - 1. (VA)1 - (VB)1 5.054 - 0 = 0.0652 Ans.

FlS-17. ( + i ) m[(vb)11y = (^) m[(vbhh

[(vbh1y = [(vb)1 1y = (20 m/s)sin30° = 10 m/s (^) i

(:::.) e^ = (vwh - [(vbh1x [(vbh1x - (vwh 0.75 =^ 0 - [(vb)21x (20 m/s)cos 30° - 0 [(vbh1x = - 1 2.99 m/s^ = 1 2.99 m/s^ +--- (vbh =^ V[(vbh1; +^ [(vbh1; = V( 12.99 m/s)2^ + (10 m/s) = 16.4 m/s Ans.

() (^) = tan-1( [(Vb)21y) = tan-1( 1 0 m/s^ ) [(vbh1x 12.99 m/s = 37.6°^ Ans. F1S-18. "Lm(vx)1 =^ "Lm(vx) 2 o + 0 = (^) 3i 2 (1) + (^) 3�^12 (VBx) 2 (vBxh = - 0.1818 ft/s "Lm( Vy)1 =^ "Lm(^ vyh 3i2 (3)^ +^0 =^0 +^ 3�^12 (VBy) 2 (VBy) 2 = 0.545 ft/s �------

(vBh = V( -0.1818)2^ + (0.545)

= 0.575 ft/s^ Ans. F1S-19. Ho = "Lmvd; Ho = (^) [2(10)(�) l(4) - [2(10)m l(3) = 28 kg · m2/s ) F1S-20. Hp = "Lmvd; Hp = (^) [2(1 5) sin 30°1(2) - [2(15) cos 30°1(5) = -99.9 kg · m2/s^ =^ 99.9 kg · m2/s )

F1S-21. (^) (Hz)1 + "L J Mz dt = (Hzh 5(2)(1.5) + 5(1.5)(3) = 5v(1.5) v = 5 m/s Ans.

F1S-22. (Hz)1 + "L J Mz dt^ =^ (Hzh

o + (^) 14 s(10t)(�) (1.5)dt = 5v(1.5) v =^ 12.8 m/s^ Ans.

F1S-23. (^) (Hzh + "L J Mz dt = (Hzh

o + (^) 15 sO.9t2 dt = 2v(0.6) v =^ 31.2 m/s^ Ans.

F1S-24. (Hzh + "L J Mz dt = (Hzh

o + (^) 14 S8tdt + 2(10)(0.5)(4) =^ 2[10v(0.5) v =^ 10.4 m/s^ Ans.

6 9 2 PART I A L S O L U T I O N S A N D A N S W E R S

F16-10. VA = WOA X rA = (12 rad/s)k X (0.3 m)j = [-3.6i] m/s VB^ =^ VA^ +^ wAB X rB/A VBj = (-3.6 m/s)i

  • (WABk) X (0.6 cos 300i - 0.6 sin 30°j) m VBj = [WAB(0.6 sin 30°) - 3.6]i + WAB(0.6 cos 300)j o = WAB(0.6 sin 30°) - 3.6 (^) (1) VB = WAB(0.6 cos 30°)^ (2) WAB = 12 rad/s^ VB = 6.24 m/s^ i F16-11. Vc =^ VB^ +^ WBC X rCjB

F16-12.

F16-13.

vd = (-60i) ft/s

  • (-wBck) X (-2.5 cos 300i^ +^ 2.5 sin 300j)^ ft vd = (-60)i^ +^ 2.165wBd^ +^ 1.25wBC i o = -60 + 1.25wBC Vc =^ 2.165 WBC WBC = 48 rad/s Vc = 104 ft/s VB^ =^ V A + W X rB/A -VB cos 30° i + VB sin 30° j = (-3 m/s)j + (-wk) X (-2 sin 45°i - 2 cos 45°j) m -0.8660VBi + 0.5vBj = -1.4142wi + (1.4142w - 3)j -0.8660VB = -1.4142w 0.5VB = 1.4142w - 3 W = 5.02 rad/s VB = 8.20 m/s VA 6 WAB = -- = - = 2 rad/s rA/IC 3 rCjIC =^ V1.52^ + 22 =^ 2.5 m cp = tan-1C^2 s ) = 53.13° Vc =^ WAB rCjIC = 2(2.5) = (^) 5 m/s (J = 90° - cp = 90° - 53.13° = 36.9° �

Ans.

Ans. Ans.

Ans. Ans.

F16-14. (^) VB = WAB rB/A = 1 2(0.6) = 7.2 m/s �

F16-15.

Vc = 0 VB (^) 7. WBC = -- = - = 6 rad/s rB/IC 1. Vo 6 W =^ -- = - = 20 rad/s rO/lc 0. rA/IC =^ VO.32^ + 0.62^ = (^) 0.6708 m

cp = tan-l (�:�) = 26.57°

VA = wrA/IC = 20(0.6708) = 13.4 m/s (J = 90° - cp = 90°- 26.57° = 63.4°d

Ans. Ans.

Ans.

Ans. Ans.

F16-16. The location of Ie can be determined using similar triangles. 0.5 - rCjlc rCjlc 3 1 .5 rCjIC^ =^ 0.1667 m W = --Vc = -- =1.5 9 rad/s rCjlc 0. Also, rO/lc = 0.3 - rCjlc = 0.3 - 0. = 0.1333 m.

Ans.

Vo = wro/lc = 9(0.1333) = (^) 1.20 m/s Ans. F16-17. VB = wrB/A = 6(0.2) = 1 .2 m/s rB/IC =^ 0.8 tan 60° =^ 1.3856 m rCjlc =^ cos 600^ 0.8^ = 1 6. m VB 1. WBC = -- =^3856 = 0.8660rad/s rB/IC 1. = 0.866 rad/s Then, Vc =^ WBC rCjlc = 0.8660(1.6) = 1.39 m/s

F16-18. (^) VB = wAB rB/A = 10(0.2) = 2 m/s Vc = WCD rCjD = wCD(0.2) ---->

rB/IC =^ co�·�0^0 = 0.4619 m

F16-19.

rCjlc = 0.4 tan 30° = 0.2309 m WBC VB^2 =^ --rB/IC^ =^ 0 461 9 =^ 4.330 rad/s . = (^) 4.33 rad/s Vc = WBC rCjlc wCD(0.2) = 4.330(0.2309) WCD = 5 rad/s

W = -- = - = 2 rad/sVA^6 rA/IC 3 3B = 3A^ +^ a X rB/A - w2rB/A

aBi = -5j + (ak ) X (3i - 4j) - 22(3i - 4j)

aBi = (4a - 12)i + (3a + l l )j

aB = 4a - 12 0 = 3a + 1 1 a = -3.67 rad/s aB = -26.7 m/s

F16-20. (^) 3A = 30 + a X rA/O - w2rA/ = 1 .8i + (-6k) X (0.3i) - 1 22(0.3j) = 13.6i - 43.2j) m/s

Ans.

Ans.

Ans.

Ans.

Ans. Ans.

Ans.

Ans.

Fl6-21. (^) 3A =^ 3B + a^ X^ 'A/B - W2 'A/B 3i = aBj + (-ak) X 0.3j - 202(0.3j) 3i = 0.3ai + (aB - 120)j 3 = 0.3a a = 10 rad/s2^ Ans. 3A^ =^ 30 + a^ X^ 'A/o - w2'A/ = 3i + (- 10k)^ X^ (-0.6i) - 202(^ -0.6j) = 1243i + 6j} m/s2 Ans. rAIIC Fl6-22. (^3)

0.5 - rAI1C 1.5 rAIIC^ =^ 0.3333 m w = -- =VA^3 rAIIC 0 3333.^ =^ 9 rad/s 3A = 3C +^ a X^ 'A/c - w2'A/c 1.5i - (aA)nj = -0.75i + (adnj

  • (-ak) X 0.5j - 92(0.5j) 1.5i - (aA)nj = (0.5a - 0.75)i (^) + [(adn - 40.5] j 1.5 = 0.5a - 0. a = 4.5 rad/s

Fl6-23. VB = W rBIA = 12(0.3) = 3.6 m/s VB 3. WBC = -- = - =rBIIC^ 3 rad/s

3B - a^ -^ X^ 'BIA - W 'BIA^2 = (-6k) X (0.3i) - 122(0.3i) = 1 -43.2i - 1 .8j} m/s 3C =^ 3B + aBC X 'C;B - WJC'C;B aci = (-43.2i - 1.8j)

  • (aBC k)^ X^ (1.2i) - 32(1.2i) aci = -54i + (1.2aBC - 1.8)j ac = -54 m/s2 = 54 m/s2 � o = 1 .2aBc - 1.8 aBC = 1.5 rad/s

Fl6-24. (^) VB = (^) W rBIA = 6(0.2) = 1.2 m/s -->

rBIIC =^ 0.8 tan 60°^ =^ 1.3856 m WBC = -- = -VB^ 1. rBIIC 1.3 58 6 = 0.8660 rad/s 3B - a^ -^ X^ 'BIA - W 'BIA^2 = ( -3k) X (0.2j) - 62(0.2j) = (^) [0.6i - 7.2j] m/s 3C = 3B + aBC X 'C;B - W2'C;B ac cos 300i + ac sin 300j

Ans.

Ans. Ans.

= (0.6i - 7.2j) + (aBC k (^) X 0.8i) - 0.86602(0.8i) 0.8660aci + 0.5ad = (0.8aBC - 7.2)j

FUNDAMENTAL PROBLEMS 6 9 3

0.8660ac = 0 0.5ac = 0.8aBC - 7. aC = 0 aBC = 9 rad/s

Chapter 1 7 F17-1. �"2,Fx = m(ac)x; 100(�) = 100a a = 0.8 m/s2 -->

  • j "2, Fy =^ m(ac)y; NA + NB - 1 00m - 100(9.81 ) = 0 C + "2,Mc^ =^ 0; NA(0.6) + 1 00(�)(0.7)
  • NB(O.4) - 100(�)(0.7) = 0 NA = 430.4 N = 430 N NB = 61 0.6 N = 611 N F17-2. "2,Fx' = m(ac)x'; 80(9.81) sin 15° = 80a a = 2.54 m/s "2,Fy' = m(ac)y'; lV.4 (^) + NB - 80(9.81) cos 15° = 0 C + "2, Mc = 0; NAO.5) - NB(0.5) = 0 NA = NB = 379 N F17-3. (^) C + "2,MA = (^) "2,(Mk)A; lOm(7) = 3 �o 2 a(3.5) a = 19.3 ft/s � "2, Fx = m(ac)x; Ax + 1O(�) = 3�o 2 (1 9.32) Ax = 6 lb
  • j "2, Fy = m(ac)y; Ay - 20 + 1O(�) = 0 Ay = 12 lb F17-4. FA = f.LsNA = 0.2NA FB = f.LsNB = 0.2NB � "2, Fx = m(ac)x ;

Ans.

Ans.

(1)

(2) Ans. Ans.

Ans.

(1)

(2) Ans.

Ans.

Ans.

Ans.

0.2NA + 0.2NB = 100a^ (1)

  • j "2, Fy =^ m(ac)y; NA + NB - 100(9.81) = 0 (2) C + "2, Mc =^ 0; 0.2lV.4(0.75) + lV.4(0.9) + 0.2NB (0.75)
  • NB (0.6) = 0 (3) Solving Eqs. (1), (2), and (3), NA = 294.3 N = 294 N NB = 686.7 N = 687 N a = 1 .96 m/s2 Ans. Since NA is positive, the table will indeed slide before it tips.

FI7-13. (^) lc = rzml2 = rz(60)(32) = 45 kg · m

  • j 2:Fy = m(ac)y; SO - 20 = 60ac ac = 1 m/s2j C + 2: Mc =^ lca; SO(l) (^) + 20(0.75) = 45a a = 2.11 [ad/s2^ Ans.

FI7-14. (^) C + 2: MA = (Mk)A; -200(0.3) = -100ac(0.3) - 4.5a 30ac + 4.5a = 60 (1) ac = ar = a(0.3) (2) a = 4044 rad/s2^ ac = 1.33 m/s2 ---->

FI7-15. (^) + j 2:Fy = m(ac)y; N - 20(9.S1) = (^0) N = 196.2 N � 2:Fx =^ m(acL; 0.5(196.2) = 20ao ao = 4.905 m/s2^ ----> C + 2: Mo = loa; 0.5(196.2)(004) - 100 = -1.Sa a = 33.S rad/s

FI7-16. (^) C + 2: MA = (Mk)A; 20(9.S1)sin30o (0.15) = O.lSa + (20ac)(0.15) O.lSa (^) + 3ac = 1 4. ac = ar = a(0.15) a = 23.36 rad/s2^ = 2304 radN ac = 3.504 m/s2^ = 3.50 m/s

FI7-17. (^) + j 2:Fy = m(ac)y;

N - 200(9.S1 ) = 0 N^ =^1962 N � 2:Fx =^ m(acL; T - 0.2(1 962) = 200ac C + 2: MA = (Mk)A; 450 - 0.2(1962)(1) = lSa (^) + 200ac(OA)

3C = 3A^ +^ £I' X^ rC/A - w2rC/A aci = - aAj (^) + ak X (OAj) - w2( -OAj) aci = OAai + (OAw2 - aA)j ac = OAa Solving Eqs. (1), (2), and (3), a = 1.15 rad/s2 ac = 00461 m/s T = 4S5^ N

Ans.

Ans.

Ans.

Ans. Ans.

(1)

(2)

(3)

Ans.

FUNDAMENTAL PROBLEMS 6 9 5

FI7-18. � 2: Fx = m(ac)x; 0 = 1 2(ac)x (ac)x = 0 C + 2:MA = (Mk)A -12(9.S1 )(0.3) = 1 2(ac)y(0.3) - rz(12)(0.6)2a 0.36a - 3.6(ac)y = 35.316 (1) w = O 3C =^ 3A^ +^ £I' X^ rC/A - w2rC/A (ac)y j = aAi + (-ak) (^) X (0.3i) - 0 (ac)y j = (aA)i - 0.3 j aA = 0 (ac)y = -0.3a Solving Eqs. (1) and (2) a = 24.5 rad/s (ac)y = -7.36 m/s2 (^) = 7.36 mN� Chapter 1 8 FI8-1. 10 = mk8 = So( 0042) = 12.S kg · m 2 Tl = 0 T 2 = (^)! low2 = (^)! (12.S)w2 = 6Aw S = Or = 20(27T)(0.6) = 247T m

Tl + 2:Ul-2 =^ T 2

o (^) + 50(247T) = 6Aw W = 24.3 rad/s FI8-2. (^) Tl = 0

T 2 = ! m(vc)� +! lcw�

= (^)! (3�^02 slug)(2.5w 2 )

  • (^)! [M3�0 2 slug)(5 ft)21w� T 2 = 6A700w� Or, 10 = � ml2 = � (^) (3�0 2 slug)(5 ft) = 12.9400 slug·ft So that T 2 = � low� = � (12.9400 slug · ft2)W 2 2 = 6A700wi Tl + 2:Ul-2 = T 2 Tl + [-Wyc^ + MO] = T 2 o + [-(50 lb)(2.5 ft)^ +^ (100 lb·ft)(^ �)] = 6A700w� W 2 = 2.23^ rad/s

Ans. (2)

Ans.

Ans.

Ans.

6 9 6

FIS-3.

FIS-4.

FIS-S.

PART I A L S O L U T I O N S A N D A N S W E R S

(VG)Z = wZrG/lC = wz(2.S) IG = fi mZZ = fi (SO)(sZ) = 104.17 kg · mz Tl =^0 T 2 = � m(vG)� + � IGw� = � (SO)[ wz(2.S) (^) F + �(104.17)w� = (^) 208.33w� Up = PSp = 600(3) = 1800 J Uw = -Wh = -SO(9.81)(2.S - 2) = -24S.2S J Tl + (^) "LU1-Z = Tz o + 1800 + (-24S.2S) = 208.33w� Wz = 2.732 rad/s = 2.73 rad/s T = � mvO 2 + (^) � 10wZ = (^) � (SO kg)(OAw)2 + (^) � [SO kg(0.3 m)2]wZ = 6.2Swz J Or, T = � llcwz = (^) � [SO kg(0.3 mf + SO kg(OA m)Z]wZ = 6.2Swz J So = Or = 10(21T rad)(OA m) = 81T m Tl + "LU1-Z =^ Tz TJ + P cos 30° So = T 2 o + (SO N)cos 300(81T m) = 6.2Sw2 J w = 13.2 rad/s 1.G (^) = .1. mZ2 = 12 .1.l (^) (30)( 3Z) = 22 S kg ' mZ Z. Tl =^0 Tz = � mVG Z^ + � IGWz = � (30)[w(0.S)j2 (^) + �(22.S)w2 = lSw 10 = IG + mdz = fi (30)(32) + 30(0.SZ) = 30 kg ' mz Or, T 2 = � 10wz = � (30)wz = lSwz Sl =^ Orl =^ 81T(0.S) =^ 41T m S 2 = Or 2 = 81T(1.S) = 121Tm

Up, = PZs 2 = 20(121T) = 2401T J UM =^ MO^ = 20[4(21T)] = 1601T J Tl + (^) "LU1-Z = Tz o + 1201T + 2401T + 1601T = lSwz w = 10044 rad/s = lOA rad/s

Ans.

Ans.

Ans.

FIS-6. Vo = wr = w(OA) 10 = mkoz = 20(0.32) = 1 .8 kg · m TI = 0 Tz = � mVG Z + � IGwz = � (20)[ w(OA) (^) F + �(1.8)wz = 2.Swz

UM = MO = M C:) = SO(�.�) = 2S00 J

Tl + "LU1-Z = Tz o + 2S00 = 2.Sw w = 31.62 rad/s = 31.6 rad/s Ans. FIS-7. VG = wr = w(0.3) IG =^ � mr2^ = (^) � (30)( 0.3Z) = (^) 1.3S kg · mZ TJ = 0 Tz = � m(vG)�^ +^ � IGw� = (^) � (30)[W 2 (0.3)]2 (^) + �(1.3S)wi = (^) 2.02Sw� (Vg)l = WYl = 0 (Vg)z =^ -WY2 =^ -30(9.81)(0.3)^ =^ -88.92 J Tl + � = T 2 + V 2 o + 0 = 2.02Sw1 + (-88.29) W 2 = 6.603 rad/s = 6.60 rad/s Ans. FIS-S. Vo = wro/lc = w(0.2) 10 = mkOZ = SO( 0.32) = 4.S kg ' mZ Tl =^0 T 2 = (^) � m(vo)i + �low�

= hSO)[ wz(0.2) F + � (4.S)w�

= 3.2Sw (Vg)l = WYl = 0 (Vg)z = -Wyz = (^) -SO(9.81)(6 sin 30°) = -1471 .SJ TI + � = T 2 + V 2 o + 0 = 3.2Swi + (-1471.S) W 2 = 21.28 rad/s = 21.3 rad/s Ans.

6 9 8 PART I A L S O L U T I O N S A N D A N S W E R S

F19-3. VA = WA'A/IC = WA (0.15)

C +^ "LMo =^ 0; 9 - AI(0.45)^ =^0 AI =^ 20 N

C +(Hch +^ "L j

l Mcdt = (Hc) 2 I, o + 20(5) = 10wAO.15)

  • [1O(0.12) ]wA WA = 46.2 rad/s Ans.

F19-4. fA = mkl = 10 (0.082) = 0.064 kg · m

IB =^ mk�^ =^50 (0.152)^ =^ 1 .1 25 kg · m

('B ) (0.2)

WA =^ 'A WB =^ 0:1 WB =^ 2WB

(5 S

Jo^ Fdt^ =^ 500 - 1.28(WB)^2

(5 S

Jo^ Fdt^

= (^) 5.625(wBh Equating Eqs. (1) and (2), 500 - 1.28(wBh^ =^ 5.625(WB) 2

(WB) 2 =^ 72.41 rad/s^ =^ 72.4 rad/s^ Ans.

F19-S. (�) m[ (voL]1 + "L J Fx dt = m[ (voLh

o + (150 N)(3 s) + FA(3 s) = (50 kg)(0.3w 2 )

( +fCWI + "L J Mc dt = Icw 2

o + (150 N)(0.2 m)(3 s) - FAO.3 m)(3 s) = [(50 kg)(0.175 mf]w 2 W 2 = 37.3 rad/s Ans. FA = 36.53 N Also,

hcwi +^ "L^ J Mlc dt^ =^ Ilcw 2

o + [(150 N)(0.2 + 0.3) m](3 s) = (^) [(50 kg)(0.175 m)2 (^) + (50 kg)(0.3 mf]w 2 W 2 = 37.3 rad/s Ans.

F19-6. (+i) m[(vc)I]Y + "L J Fy dt = m[(vc)2]Y

o + NA(3 s) - (150 Ib)(3 s) = 0 NA = 150 lb

( +^ (Hlch +^ "L J Mlc dt^ =^ (Hlch

o + (25 Ib · ft)(3 s) - [0.15(150 Ib)(3 s)](0.5 ft) = W.� slug(1.25 ft)2]W 2 + w.� slug) [w 2 (1 ft)](l ft) W 2 = 3.46 rad/s Ans.

An swe rs to S e l e cted P ro b l e m s

Chapter 1 2 12-1. v2^ =^ VB^ +^ 2ac(^ S - so) ac = 0.5625 m/s v = Vo + act t = 26.7 s 12-2. (^) v = 0 + (^1) (30) = 30 m/s S = 450 m 12-3. t = 3 s S = 22.5 ft 12-5. (^) dv = a dt v =^ (^6 t2 - 2t3/2)^ ft/s ds = (^) v dt S = (2t3 - � t5/2 + (^) 1 5) ft 12-6. h^ =^127 ft v =^ -90.6^ ft/s^ =^ 90.^6 ft^ /^ s^ � 12-7. (^) v = 13 m/s �s = 76 m t = 8.33 s 12-9. dt = dva v = Vr-2k-t-+-v--" 6 12-10. SA = 3200 ft 12-11. a = -24 m/s �s = -880 m ST = 91 2 m 12-13. �s = 2 m ST = 6 m vavg = 0.333 m/s (vsp)avg = 1 m/s 12-14. vavg = 0.222 m/s (vsp)avg = 2.22 m/s 12-15. d = 517 ft d = 616 ft 12-17. h = 5t' - 4.905(t,)2 + 1 0 h = 19.81t' - 4.905(t,)2 - 14. t' = 1. 682 m h = 4.54 m 12-18. S = 1708 m vavg = 22.3 m/s 12-19. al H = 1.06 m/s 12-21. VA = (^) ( 3 t^2 - 3t) ft/s VB = (4t3 - 8t) ft/s t = 0 s and = 1 s B stops

12-22.

12-23.

12-25.

12-26.

12-27. 12-29.

t = 0 s t = Yz s SABl r=4 s = 152 ft (ST)A = 41 ft (ST)B = 200 ft Choose the root greater than 10 m S = 11.9 m v = 0.250 m/s v = (20e-2r) m/s a = ( -40e-2r) m/s S = 1O(1 - e-2r) m

1 (g + kV02 )

S = 2k In g + kv 1 hmax = 2k In ( 1 + :gYok^ 2) v =^ 4.11^ m/s a = 4.13 m/s v =^ 1.29^ m/s S Ir=6s = -27.0 ft v =^ 4.50t2 - 27.0t^ +^ 22. The times when the particle stops are t = 1 s and t = 5 s. Stot = 69.0 ft

12-30.^ S^ =^ �(^1 - e-kr)

12-31. 12-33.

12-34.

12-35.

12-37.

a = -kvoe-kr

t =

vf In

(Vf^ +^ V^ )

2g vf - v Distance between motorcycle and car 5541.67 ft t = 77.6 s Sm = 3.67(1W (^) ft a = 80 km/s t = 6.93 ms vavg =^10 m/s^ <- aavg = 6 m/s ball A h = vot' - !r t,2 2 VA = Vo - gt' h = vo (t' - t) - !r et' - t)2 2 VB = Vo - get' - t) 2vo + gt t' = ----''----- 2g--=--

699