Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

for iit it's your hard process to satisfied it, Summaries of Mathematics

it's important to you and your successful life

Typology: Summaries

2019/2020

Uploaded on 01/18/2020

dk-yadav-narwar
dk-yadav-narwar 🇮🇳

5 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
BAAPOFALLFORMULALISTS
FORIITJEE
3DGEOMETRY
DownloadDoubtnutToday
SL# FORMULA
1
DistanceBetweentwopoints
2
DividingaLineSegmentintheRatio
,
,
.
3
MidpointofaLineSegment
,
,
.
4
AreaofaTriangleTheareaofatrianglewithvertices
,and isgivenby
.
5VolumeofaTetrahedron
The volume of a tetrahedron with vertices and
isgivenby
Note:Wechoosethesign(+)or()sothattogetapositiveanswerforvolume.
d
=
AB
=
(
x
2
x
1)2+ (
y
2
y
1)2+ (
z
2
z
1)2
λx
0=
x
1+
λx
2
1 +
λ
y
0=
y
1+
λy
2
1 +
λ
z
0= ,
whereλ
= ,
λ
1
z
1+
λz
2
1 +
λ
AC
CB
x
0=
x
1+
x
2
2
y
0= (
y
1+
y
2)/2
z
0= ,
λ
= 1
z
1+
z
2
2
P
1(
x
1,
y
1,
z
1),
P
2(
x
2,
y
2,
z
2)
P
3(
x
3,
y
3,
z
3)
S
=
y
1
z
11
y
2
z
21
y
3
z
31
2
+
z
1
x
11
z
2
x
21
z
3
x
31
2
+
x
1
y
11
x
2
y
21
x
3
y
31
2
1
2
P
1(
x
1,
y
1,
z
1),
P
2(
x
2,
y
2,
z
2),
P
3(
x
3,
y
3,
z
3)
P
4(
x
4,
y
4,
z
4)
V
= ±
x
1
y
1
z
11
x
2
y
2
z
21
x
3
y
3
z
31
x
4
y
4
z
41
, or
V
= ±
x
1
x
4
y
1
y
4
z
1
z
4
x
2
x
4
y
2
y
4
z
2
z
4
x
3
x
4
y
3
y
4
z
3
z
4
.
1
6
1
6
pf3
pf4
pf5

Partial preview of the text

Download for iit it's your hard process to satisfied it and more Summaries Mathematics in PDF only on Docsity!

BAAP OF ALL FORMULA LISTS

FOR IIT JEE

3D GEOMETRY

 Download Doubtnut Today

SL# FORMULA

1

Distance Between two points

2

Dividing a Line Segment in the Ratio

,

,

.

3

Midpoint of a Line Segment

,

,

.

4

Area of a Triangle The area of a triangle with vertices

, and is given by

.

5 Volume of a Tetrahedron

The volume of a tetrahedron with vertices and is given by

Note: We choose the sign (+) or () so that to get a positive answer for volume.

d = AB = √( x 2 − x 1 )

2

  • ( y 2 − y 1 )

2

  • ( z 2 − z 1 )

2

λx 0 =

x 1 + λx 2

1 + λ

y 0 =

y 1 + λy 2

1 + λ

z 0 = , whereλ = , λ ≠ − 1

z 1 + λz 2

1 + λ

AC

CB

x 0 =

x 1 + x 2

2

y 0 = ( y 1 + y 2 ) / 2

z 0 = , λ = 1

z 1 + z 2

2

P 1 ( x 1 , y 1 , z 1 ), P 2 ( x 2 , y 2 , z 2 ) P 3 ( x 3 , y 3 , z 3 )

S =

y 1 z 1 1

y 2 z 2 1

y 3 z 3 1

2

z 1 x 1 1

z 2 x 2 1

z 3 x 3 1

2

x 1 y 1 1

x 2 y 2 1

x 3 y 3 1

2

1

2

P 1 ( x 1 , y 1 , z 1 ), P 2 ( x 2 , y 2 , z 2 ), P 3 ( x 3 , y 3 , z 3 ) P 4 ( x 4 , y 4 , z 4 )

V = ±

x 1 y 1 z 1 1

x 2 y 2 z 2 1

x 3 y 3 z 3 1

x 4 y 4 z 4 1

, or V = ±

x 1 − x 4 y 1 − y 4 z 1 − z 4

x 2 − x 4 y 2 − y 4 z 2 − z 4

x 3 − x 4 y 3 − y 4 z 3 − z 4

6

General Equation of a Plane

7

Normal Vector to a plane

The vector is normal to the plane

 DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE

8

Particular Cases of the Equation of a plane

If , the plane is parallel to the xaxis.

If , the plane is parallel to the yaxis.

If the plane is parallel to the zaxis.

If , the plane lies on the origin.

If , the plane is paralle to the xyplane,

If the plane is parallel to the yzplane.

If the plane is parallel to the xzplane.

9

Point Direction form

where the point lies in the plane, and the vector (A,B,C) is normal to the plane.

10

Intercept form

11

Three Point Form

12

Normal Form

where p is the perpendicular distance from the origin to the plane, and are the direction cosines of any line normal to the plane.

13

Parametric form

where are the coordinates of any unknown point on the line the

point lies in the plane, the vectors and are parallel to the plane.

14 Dihedral Angle Between Two Planes

Ax + By + Cz + D = 0

n ( A , B , C ) Ax + By + Cz + D = 0

Ax + By + Cz + D = 0

A = 0

B = 0

C = 0

D = 0

A = B = 0

B = C = 0

A = C = 0

A ( xx 0 ) + B ( yy 0 ) + C ( zz 0 ) = 0 P ( x 0 , y 0 , z 0 )

x

a

y

b

z c ∣ ∣ ∣ ∣ ∣

xx 3 yy 3 zz 3

x 1 − x 3 y 1 − y 3 z 1 − z 3

x 2 − x 3 y 2 − y 3 z 2 − z 3

= 0, or

x y z 1

x 1 y 1 z 1 1

x 1 y 1 z 1 1

x 2 y 2 z 2 1

x 3 y 3 z 3 1

cos α + y cos β + z cos gamap = 0 cos α , cos β , cos γ

x = x 1 + a 1 s + a 2 t

y = y 1 + b 1 + b 2 t

z = z 1 + c 1 s + c 2 t

( x , y , z )

P ( x 1 , y 1 , z 1 ) ( a 1 , b 1 , c 1 ) ( a 2 , b 2 , c 2 )

.

 DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE

24

Parallel Lines

Two lines are parallel if.

25

Perpendicular Lines

Two lines are perpendicular if , or

26

Intersection of two lines Two Lines

and intersect at

27

Parallel Line and Plane

The straight line and the plane are

parallel iif , or

28

Perpendicular Line and Plane

The straight line and the plane are

perpendicular if or.

29

General Quadratic Equation

30

Real Ellipsoid (Case 1)

31

Imaginary Ellipsoid (Case 2)

 DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE

32 Hyperboloid of 1 Sheet (Case 3)

cos ϕ = =

s (^) 1.

s (^) 2

∣ ∣

s (^) 1 ∣∣. ∣∣

s (^) 2 ∣∣

a 1 a 2 + b 1 b 2 + c 1 c 2

a^21 + b^21 + c^21. √ a^22 + b^22 + c^22

s (^) 1 ∣ ∣

s (^) 2 , or = =

a 1

a 2

b 1

b 2

c 1

c 2

s (^) 1.

s (^) 2 = 0 a 1 a 2 + b 1 b 2 + c 1 c 2 = 0

xx 1

a 1

yy 1

b 1

zz 1

c 1

xx 2

a 2

yy 2

b 2

zz 2

c 2

x 2 − x 1 y 2 − y 1 z 2 − z 1

a 1 b 1 c 1

a 2 b 2 c 2

xx 1

a

yy 1

b

zz 1

c

Ax + By + Cz + D = 0

n.

s = 0 Aa + Bb + Cc = 0

xx 1

a

yy 1

b

zz 1

c

Ax + By + Cz + D = 0

n ∣ ∣

s = =

A

a

B

b

C

c

Ax

2

  • By

2

  • Cz

2

  • 2 F yz + 2 Gzx + 2 Hxy + 2 P x + 2 Qy + 2 Rz + D = 0

x^2

a^2

y^2

b^2

z^2

c^2

x

2

  • a

2

    • = − 1

y^2

b^2

z^2

c^2

33

Hyerboloid of 2 Sheets (case 4)

34

Real Quadric Cone (Case 5)

35

Imaginary Quadric Cone (case 6)

36

Elliptic Paraboloid (Case 7 )

37

Hyperbolic Paraboloid (Case 8)

38

Real Ellipstic Cylinder (case 9)

39

Imaginary Elliptic Cylinder (case 10)

 DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE

40

Hyperbolic Cylinder (Case 11)

41

Real Intersecting Planes (Case 12)

42

Imaginary Intersecting Planeks (case 13)

43 Parabolic Cylinder (Case 14)

x^2

a^2

y^2

b^2

z^2

c^2

x^2

a^2

y^2

b^2

z^2

c^2

x^2

a^2

y^2

b^2

z^2

c^2

x^2

a^2

y^2

b^2

z^2

c^2

  • z = 0

x^2

a^2

y

2

b^2

− − z = 0

x^2

a^2

y^2

b^2

x^2

a^2

y^2

b^2

x^2

a^2

y^2

b^2

x^2

a^2

y^2

b^2

x^2

a^2

y

2

b^2

x^2

a^2

y

2

b^2

 Free Video Solutions of NCERT, RD Sharma, RS Aggarwal, Cengage (G.Tewani),

Resonance DPP, Allen, Bansal, FIITJEE, Akash, Narayana, VidyaMandir

 Download Doubtnut Today