Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Finite Difference Method - Numerical Methods - Lecture Slides, Slides of Mathematical Methods for Numerical Analysis and Optimization

Main points are: Finite Difference Method, Boundary Value, Ordinary Differential Equation, Differences Approximations, Pressure Vessel, Solving System of Equations, Comparison of Radial Displacements, Decimal Number to Binary

Typology: Slides

2012/2013

Uploaded on 04/16/2013

mmadhav
mmadhav 🇮🇳

5

(8)

76 documents

1 / 13

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Finite Difference Method
Docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd

Partial preview of the text

Download Finite Difference Method - Numerical Methods - Lecture Slides and more Slides Mathematical Methods for Numerical Analysis and Optimization in PDF only on Docsity!

Finite Difference Method

Finite Difference Method

An example of a boundary value ordinary differential equation is

2 1 2 0 , (^5 )^0.^008731 ", (^8 )^0.^0030769 "

2

+ − = u = u =

r

u

dr

du

dr r

d u

The derivatives in such ordinary differential equation are substituted by finite

divided differences approximations, such as

x

y y

dx

dy i i

≈ +^1 −

( )^2

1 1 2

x

y y y dx

d y i i i

Solution

Step 1 At node^ i^ =^0 ,^ r 0 = a =^5 " u 0 =^0.^0038731 "

Step 2 At node i =^1 ,^ r 1 = r 0 +∆ r =^5 +^0.^6 =^5.^6 "

( ) ( ) (^ )(^ )^ ( ) (^ )(^ )^

2 0 2 2 1 2 ^2 =

+^ +

u + − − − u u

2. 7778 u 0 − 5. 8851 u 1 + 3. 0754 u 2 = 0

Step 3 At node i = 2 , r 2 =^ r 1 +∆ r =^5.^6 +^0.^6 =^6.^2 "

( )( ) ( )( )

2 1 2 2 2 2 ^3 =

+^ +

u + ^ − − − u u

2. 7778 u 1 − 5. 8504 u 2 + 3. 0466 u 3 = 0

Solution Cont

Step 4 At node i = 3 , r 3 =^ r 2 +∆ r =^6.^2 +^0.^6 =^6.^8 "

( )( ) ( )( ) 0

  1. 8 0. 6

1

  1. 6

1

  1. 8

1

  1. 8 0. 6

1

  1. 6

2

  1. 6

1 2 2 2 2 3 2 ^4 = 

  +^ + 

  u + ^ − − − u u

2. 7778 u 2 − 5. 8223 u 3 + 3. 0229 u 4 = 0

Step 5 At node

Step 6 At node

i = 4 , r 4 =^ r 3 +∆ r =^6.^8 +^0.^6 =^7.^4 "

( )( ) (^) ( ) ( )( ) 0

  1. 4 0. 6

1

  1. 6

1

  1. 4

1

  1. 4 0. 6

1

  1. 6

2

  1. 6

1 (^2 32242) ^5 = 

  +^ + 

  u + ^ − − − u u

2. 7778 u 3 − 5. 7990 u 4 + 3. 0030 u 5 = 0

i = 5 , r 5 =^ r 4 +∆ r =^7.^4 +^0.^6 =^8

u 5 = u | r = b = 0. 0030769 "

Solution Cont

r

u u

dr

du

r a ∆

=^100. 6

= (^) =− 0. 00042767

  1. 3 ( 0. 00042767 ) 21307 psi 5

2

6 max =

σ = ×

FS =^36 ×^103 =

E t = 20538 − 21307 =− 768. 59

∈ =^20538 −^21307 × =

t

Solution Cont

( )^2

1 1 2

x

y y y

dx

d y i i i

Using the approximation of

( x )

y y

dx

dy i i

and^11

( ) (^ )^

0 2

(^21) 2

1 1 2

(^1 1) − = ∆

  • −^ + − + − i

i i i i

i i i r

u r

u u r r

u u u

2 1222 ^1 =

− − i +

i

i i

i i

u

r r r

u

r r

u

r r r

Gives you

Solution Cont

Step 4 At node i = 3 , r 3 = r 2 +∆ r = 6. 2 + 0. 6 = 6. 8

( )( ) ( )( )

2 2 2 2 3 2 ^4 =

+^ +

+^ − −

 (^) − + u u u

2. 6552 u 2 − 5. 5772 u 3 + 2. 9003 u 4 = 0

Step 5 At node

Step 6 At node

i = 4 , r 4 =^ r 3 +∆ r =^6.^8 +^0.^6 =^7.^4

( )( ) (^) ( ) ( )( )

2 3 2 2 4 2 ^5 =

+^ +

 (^) − + u u u

2. 6651 u 3 − 5. 5738 u 4 + 2. 8903 u 5 = 0

i = 5 , r 5 =^ r 4 +∆ r =^7.^4 +^0.^6 =^8 "

u 5 = u | r = b = 0. 0030769 "

Solving system of equations





=









  1. 0030769

0

0

0

0

  1. 0038731

0 0 0 0 0 1

0 0 0 2. 6651 5. 5738 2. 8903

0 0 2. 6552 5. 5772 2. 9003 0

0 2. 6434 5. 5816 2. 9122 0 0

  1. 6297 5. 5874 2. 9266 0 0 0

1 0 0 0 0 0

5

4

3

2

1

0

u

u

u

u

u

u

u 0 = 0. 0038731

u 1 = 0. 0036115

u 2 = 0. 0034159

u 3 = 0. 0032689

u 4 = 0. 0031586

u 5 = 0. 0030769

Comparison of radial displacements

Table 1 Comparisons of radial displacements from two methods

r u exact u 1st order |єt | u 2nd order |єt |

5.6 0.0036110 0.0036165 1.5160×10−1^ 0.0036115 1.4540×10−

6.2 0.0034152 0.0034222 2.0260×10−1^ 0.0034159 1.8765×10−

6.8 0.0032683 0.0032743 1.8157×10−1^ 0.0032689 1.6334×10−

7.4 0.0031583 0.0031618 1.0903×10−1^ 0.0031586 9.5665×10−