Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Exercise for more advanced problems on trigonometric ratio of allied angles and a problems, Exercises of Mathematics

Trigonometric ratio and allied angles Exercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problems Exercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of allied angles and a problemsExercise for more advanced problems on trigonometric ratio of

Typology: Exercises

2023/2024

Uploaded on 03/17/2024

swarnendu-saha
swarnendu-saha 🇮🇳

1 document

1 / 1

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Exercise (Extra Problems)
Trigonometric Ratios of Associated Angles
PROBLEMS.
1. Find the value of sin2120+ cos2150+ tan2120+ cos 180tan 135.
2. Find the minimum positive values of xand y:sin (xy) = 1
2;
cos (x+y) = 1
2.
3. For the minimum positive values of xand ysolve the given equations:
tan x+ tan y= 2 ;2 cos xcos y= 1.
4. Find the value of :
(i) sin21+ sin23+ sin25+· · · + sin285+ sin287+ sin289.
(ii) sin25+ sin210+ sin215+· · · + sin290.
(iii) sin26+ sin212+ sin218+· · · + sin290.
(iv) sin29+ sin218+ sin227+· · · + sin290.
(v) sin210+ sin220+ sin230+· · · + sin290.
(vi) cos (1)·cos (2)·cos (3)· · · cos (189).
(vii) tan (1)·tan (2)·tan (3)· · · tan (89).
(viii) tan (35)·tan (40)·tan (45)·tan (50)·tan (55).
(ix) sin (10) + sin (20) + sin(30) + sin (40) + · · · + sin (360).
(x) cos (10) + cos (20) + cos(30) + cos (40) + · · · + cos (360).
(xi) sin21+ sin23+ sin25+· · · + sin285+ sin287+ sin289.
(xii) sin2 π
18!+ sin2 π
9!+ sin2 4π
9!+ sin2 7π
18 !.
(xiii) tan (20)·tan (25)·tan (45)·tan (65)·tan (70).
(xiv) cos (18) + cos (234) + cos(162) + cos (306).
(xv) cos (20) + cos (40) + cos(60) + · · · + cos (180).
(xvi) sin (20) + sin (40) + sin(60) + · · · + sin (360).
5. Find the value of cos (θ1) + cos(θ2) + cos (θ3), if
sin (θ1) + sin (θ2) + sin(θ3)=3. (0θiπ
2,i= 1,2,3).
END
Page 1

Partial preview of the text

Download Exercise for more advanced problems on trigonometric ratio of allied angles and a problems and more Exercises Mathematics in PDF only on Docsity!

Exercise (Extra Problems)

Trigonometric Ratios of Associated Angles

PROBLEMS.

  1. Find the value of sin^2 120 ◦ + cos^2 150 ◦ + tan^2 120 ◦ + cos 180◦ − tan 135◦.
  2. Find the minimum positive values of x and y : sin ( xy ) = 12 ; cos ( x + y ) = 12.
  3. For the minimum positive values of x and y solve the given equations: tan x + tan y = 2 ; 2 cos x cos y = 1.
  4. Find the value of : (i) sin^2 1 ◦ + sin^2 3 ◦ + sin^2 5 ◦ + · · · + sin^2 85 ◦ + sin^2 87 ◦ + sin^2 89 ◦. (ii) sin^2 5 ◦ + sin^2 10 ◦ + sin^2 15 ◦ + · · · + sin^2 90 ◦. (iii) sin^2 6 ◦ + sin^2 12 ◦ + sin^2 18 ◦ + · · · + sin^2 90 ◦. (iv) sin^2 9 ◦ + sin^2 18 ◦ + sin^2 27 ◦ + · · · + sin^2 90 ◦. (v) sin^2 10 ◦ + sin^2 20 ◦ + sin^2 30 ◦ + · · · + sin^2 90 ◦. (vi) cos (1◦ ) · cos (2◦ ) · cos (3◦ ) · · · cos (189◦ ). (vii) tan (1◦ ) · tan (2◦ ) · tan (3◦ ) · · · tan (89◦ ). (viii) tan (35◦ ) · tan (40◦ ) · tan (45◦ ) · tan (50◦ ) · tan (55◦ ). (ix) sin (10◦ ) + sin (20◦ ) + sin (30◦ ) + sin (40◦ ) + · · · + sin (360◦ ). (x) cos (10◦ ) + cos (20◦ ) + cos (30◦ ) + cos (40◦ ) + · · · + cos (360◦ ). (xi) sin^2 1 ◦ + sin^2 3 ◦ + sin^2 5 ◦ + · · · + sin^2 85 ◦ + sin^2 87 ◦ + sin^2 89 ◦.

(xii) sin^2

( (^) π 18

)

  • sin^2

( (^) π 9

)

  • sin^2

( (^4) π 9

)

  • sin^2

( (^7) π 18

) .

(xiii) tan (20◦ ) · tan (25◦ ) · tan (45◦ ) · tan (65◦ ) · tan (70◦ ). (xiv) cos (18◦ ) + cos (234◦ ) + cos (162◦ ) + cos (306◦ ). (xv) cos (20◦ ) + cos (40◦ ) + cos (60◦ ) + · · · + cos (180◦ ). (xvi) sin (20◦ ) + sin (40◦ ) + sin (60◦ ) + · · · + sin (360◦ ).

  1. Find the value of cos ( θ 1 ) + cos ( θ 2 ) + cos ( θ 3 ), if sin ( θ 1 ) + sin ( θ 2 ) + sin ( θ 3 ) = 3. ( 0 ≤ θiπ 2 , ∀ i = 1 , 2 , 3 ).

END

Page 1