



Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Exercice_4 analyse numérique Quelle est la nature de la série de terme général
Typology: Exercises
1 / 5
This page cannot be seen from the preview
Don't miss anything!
Exercice 4. D´eterminer le rayon de convergence R des s´eries enti`eres suivantes, ainsi que leur somme sur l’intervalle ] − R, R[. ∑ n≥ 0
(i) A(x) = (2n^ + 3n)xn, (ii) B(x) =
n≥ 0
(3n + 1)x^3 n, (iii) C(x) =
n≥ 0
1 (2n)! x
4 n,
(iv) D(x) =
n≥ 0
sin(n)xn, (v) E(x) =
n≥ 0
4 n n+1 x
n+1, (vi) F (x) = ∑ n≥ 0
cos(n) n! x
n.
Exercice 5. On considere la s´erie enti
ere
n≥ 2
(−1)n n(n−1) x
n.
I =
n=
(−1)n n(n − 1)
Exercice 6. Montrer que les fonctions suivantes sont d´eveloppables en s´erie enti`ere, et calculer leur d´eve- loppement.
(i) f (x) = ex^ cos(x), (ii) g(x) = ln(1+ x x), (iii) h(x) = (^) x (^2) −^24 x+
(v) j(x) =
∫ (^) x 0 e
−t^2 dt, (vi) k(x) = ln(6-5 x + x (^2) ).
eexercice 4.
Quelle est la nature de la série de terme général un =
2 + sin n p 4
Calculer
n = 0
u (^) n où u (^) n = e −^2 n^ ch n.
1 n ( n + 1)( n + 2)
2 n
n + 1
2( n + 2)
n ( n + 1)( n + 2)
. Soit Sn =
∑^ n
k = 1
u (^) k , la
somme parti (el le de rang n e la série de terme général u (^) n. Montrer que
Sn =
n + 2
n + 1
)d .
n = 1
S = u (^) n.
Exercice 1.
Exercice 2.
Exercice 3.
Exercice 8. Soit f , la fonction paire, 2 π-p´eriodique, d´efinie par
∀x ∈ [0, π], f (x) = π^2 − x^2.
k=
(−1)k+ k^2
n=
n=
n=
n=
Exercice 9. Soit f , la fonction 2 π-p´eriodique donn´ee par
∀x ∈] − π, π], f (x) = e−x.
k∈Z
1 + k^2
1 + e−^2 π 1 − e−^2 π^
π^2
+∞
n =−∞