




























































































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Aerospace engineers are employed in industries in which workers design or build aircraft, missiles, systems for national defense, or spacecraft. They work primarily for firms that engage in manufacturing, analysis and design, research and development, and for the federal government.
Typology: Study notes
1 / 132
This page cannot be seen from the preview
Don't miss anything!
EN09 301 Engineering Mathematics-III 3 1 - 30 70 3 4
EN09 302 Humanities and Communication Skills
EC09 303 Network Analysis & Synthesis 4 1 - 30 70 3 5
EC09 304 Signals and Systems 3 1 - 30 70 3 4
EC09 305 Digital Electronics 3 1 - 30 70 3 4
EC09 306 Electrical Engineering 3 1 - 30 70 3 4
EC09 307(P) Digital Electronics Lab - - 3 50 50 3 2
EC09 308(P) Electrical Engineering Lab - - 3 50 50 3 2
TOTAL 18 6 6 28
EN09 401(B) Engineering Mathematics IV (^3 1) - 30 70 3 4
EN09 402 Environmental Science (^2 1) - 30 70 3 3
EC09 403 Electronic Circuits (^4 1) - 30 70 3 5
EC09 404 Analog Communication (^3 1) - 30 70 3 4
EC09 405 Computer Organization & Architecture
EC09 406 Solid State Devices (^3 1) - 30 70 3 4
EC09 407(P) Electronic Circuits Lab (^) - - 3 50 50 3 2
EC09 408(P) Analog Communication Lab (^) - - 3 50 50 3 2
TOTAL 18 6 6 28
EC09 701 Information Theory and Coding (^4 1) - 30 70 3 5
EC09 702 Microwave Engineering (^3 1) - 30 70 3 4
EC09 703 Analog & Mixed MOS Circuits (^2 1) - 30 70 3 3
EC09 704 Digital System Design (^2 1) - 30 70 3 3
EC09 Lxx Elective-II (^3 1) - 30 70 3 4
EC09 Lxx Elective-III (^3 1) - 30 70 3 4
EC09 707(P) Communication systems Lab (^) - - 3 50 50 3 2
EC09 708(P) VLSI Design Lab (^) - - 3 50 50 3 2
EC09 709(P) Project (^) - - 1 100 - - 1
TOTAL 17 6 7 28
EC09 801 Data & Communication Network (^4 1) - 30 70 3 5
EC09 802 Wireless Mobile communication (^2 1) - 30 70 3 3
EC09 Lxx Elective-IV (^3 1) - 30 70 3 4
EC09 Lxx Elective-V (^3 1) - 30 70 3 4
EC09 805(P) Seminar (^) - - 3 100 - - 2
EC09 806(P) Project (^) - - 11 100 - - 7
EC09 807(P) Viva Voce (^) - - - - 100 - 3
TOTAL 12 4 14 28
EC09 L06 Soft Computing EC09 L07 High Speed Digital Design EC09 L08 Introduction to MEMS EC09 L09 Multimedia Communication Systems EC09 L10 Management Information systems EC09 L11 Cryptography & Network security EC09 L12 Antenna Theory & Design EC09 L13 Microwave Active Devices & Circuits
EC09 L14 Internet technology EC09 L15 Television & Radar Engineering EC09 L16 Embedded systems EC09 L17 Photonic Switching And Network EC09 L18 Nano Technology EC09 L19 Advanced semiconductor device technology EC09 L20 Mobile computing EC09 L21 Image & video Processing EC09 L22 Advanced digital signal Processing EC09 L23 Data Structures & Algorithms EC09 L24 Electronic Packaging EC09 L25 Biomedical Instrumentation
CE09 L25 Finite Element Analysis ME09 L23 Industrial Safety Engineering EE 09 L24 Mechatronics EE 09 L25 Robotics & Automation CS09 L23 Simulation & Modeling CS09 L25 Pattern Recognition
Aerospace Engineering and Navigation Instrumentation
IC09 L23 Bio-Informatics AI09 L25 Probability and Random process BM09 L24 Virtual Instrumentation
University Examination Pattern
PART A: Short answer questions (one/two sentences) 5 x 2 marks=10 marks All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.
PART B: Analytical/Problem solving questions 4 x 5 marks=20 marks Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.
PART C: Descriptive/Analytical/Problem solving questions 4 x 10 marks=40 marks Two questions from each module with choice to answer one question. Maximum Total Marks: 70
Internal Continuous Assessment (Maximum Marks-30)
60% - Tests (minimum 2) 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc. 10% - Regularity in the class
EN09 302: HUMANITIES AND COMMUNICATION SKILLS (COMMON TO ALL BRANCHES)
Objectives
Module I (8 hours) Humanities, Science and Technology: Importance of humanities to technology, education and society- Impact of science and technology on the development of modern civilization. Contributions of ancient civilization: Chinese, Indian, Egyptian and Greek. Cultural, Industrial, Transportation and Communication revolutions. Advances in modern India: Achievements in information, communication and space technologies.
Module II (9 hours)
Concept of communication: The speaker/writer and the listener/reader, medium of communication, barriers to communication, accuracy, brevity, clarity and appropriateness Reading comprehension: Reading at various speeds, different kinds of text for different purposes, reading between lines. Listening comprehension: Comprehending material delivered at fast speed and spoken material, intelligent listening in interviews Speaking: Achieving desired clarity and fluency, manipulating paralinguistic features of speaking, task oriented, interpersonal, informal and semi formal speaking, making a short classroom presentation. Group discussion: Use of persuasive strategies, being polite and firm, handling questions and taking in criticisms on self, turn-taking strategies and effective intervention, use of body language.
Module III (10 hours)
Written Communication : Note making and taking, summarizing, notes and memos, developing notes into text, organization of ideas, cohesion and coherence, paragraph writing, ordering information in space and time, description and argument, comparison and contrast, narrating events chronologically. Writing a rough draft, editing, proof reading, final draft and styling text. Technical report writing: Synopsis writing, formats for reports. Introductory report, Progress report, Incident report, Feasibility report, Marketing report, Field report and Laboratory test report Project report: Reference work, General objective, specific objective, introduction, body, illustrations using graphs, tables, charts, diagrams and flow charts. Conclusion and references
Teaching scheme Credits: 3 2 hours lecture and 1 hour tutorial per week
EC09 303: NETWORK ANALYSIS & SYNTHESIS
Objectives
Module I (21 hours) Analysis of electric networks – loop and nodal analysis. Network theorems – Thevenin, Norton, Superposition, Maximum Power Transfer theorems. Signal representations: Impulse, step, pulse, ramp and exponential functions. S-Domain analysis of circuits - review of Laplace transform - transformation of a circuit into S-domain - node analysis and mesh analysis of the transformed circuit - nodal admittance matrix - mutually coupled circuits – RC circuit as integrator and differentiator - transient analysis of RC and LC networks with Impulse, step, pulse, ramp and exponential inputs – step response of a RLC network
Module II (18 hours)
Network functions- The concept of complex frequency –driving point and transfer functions- Impulse response-Poles and Zeros of network functions, their locations and effects on the time and frequency domain responses. Restriction of poles and zeros in the driving point and transfer function. Time domain behaviour from the pole—zero plot. Frequency response plots-Bode plot Parameters of two-port network – impedance, admittance, transmission and hybrid - Conversion formulae. Analysis of interconnected two port networks-parallel, series, and cascade connections of 2 port networks - Characteristic impedance and propagation constant Attenuators -propagation constant, types of attenuators-T and Bridged T - compensated attenuators.
Module III (16 hours)
Filters- Introduction and basic terminology –types of filtering-L.P filter basics-Butterworth LP filter transfer characteristics- Basic passive realization of Butterworth transfer functions. Frequency transformations- Transformation to high pass, band pass and band elimination. Chebyshev filters – Characteristics-poles of the Chebyshev function
Module IV (17 hours) Synthesis: positive real functions - driving point functions - Brune's positive real functions - properties of positive real functions - testing driving point functions - application of maximum module theorems - properties of Hurwitz polynomials - even and odd functions - Strum's theorem
Teaching scheme Credits: 5 4 hours lecture and 1 hour tutorial per week
Text Books
Reference Books
Internal Continuous Assessment (Maximum Marks-30)
60% - Tests (minimum 2) 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc. 10% - Regularity in the class
PART A: Short answer questions (one/two sentences) 5 x 2 marks=10 marks
All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.
PART B: Analytical/Problem solving questions 4 x 5 marks=20 marks
Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.
PART C: Descriptive/Analytical/Problem solving questions 4 x 10 marks=40 marks
Two questions from each module with choice to answer one question.
Maximum Total Marks: 70
Note: More than 75% of the questions shall be analytical/problem oriented types.
EC09 305 DIGITAL ELECTRONICS
Module I (15 Hours) Boolean algebra: Theorems and operations- Boolean expressions and truth tables- Multiplying out and factoring expressions- Exclusive-OR and equivalence operations. Combinational logic design using truth table- Minterm and Maxterm expansions- Incompletely specified functions. Minimization Techniques: Algebraic Method, Karnaugh maps – Quine-McCluskey method- Multi output circuits- Multi-level circuits- Design of circuits with universal gates.
Module II (15 hours)
Synthesis of combinational logic functions using MSIs - multiplexers- demultiplexers- decoders- encoders Introduction to TTL and ECL logic families: Basic working of a TTL NAND gate- characteristics of a TTL NAND gate- important specifications – Basic working of ECL gate- Transfer characteristics of a ECL NAND gate- important specifications
Module III (12 Hours) Latches and Flip-Flops: SR latch- SR Flip Flop- JK Flip Flop- D Flip flop - T Flip Flop- Flip Flops with preset and clear- Triggering methods and their circuits -Conversion of one type of flip flop to other – Excitation table. Shift Registers: right shift- left shift- bi directional- SISO- SIPO- PISO- PIPO- universal shift registers.
Internal Continuous Assessment (Maximum Marks-30) 60% - Tests (minimum 2) 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc. 10% - Regularity in the class
Teaching scheme Credits: 4 3 hours lecture and 1 hour tutorial per week
Asynchronous counter operation- Up counter- Down counter- Up/ Down counter- Mod n counters- ring counters- Johnson counter.
Module IV (12 Hours)
Synchronous sequential circuits: Finite State Machines- Mealy & Moore types- Basic design steps- Design of counters, sequence generators, and sequence detectors - Design of simple synchronous machines – state minimization- ASM charts
Internal Continuous Assessment (Maximum Marks-30) 60% - Tests (minimum 2) 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc. 10% - Regularity in the class
University Examination Pattern
PART A: Short answer questions (one/two sentences) 5 x 2 marks=10 marks All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.
PART B: Analytical/Problem solving questions 4 x 5 marks=20 marks Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.
PART C: Descriptive/Analytical/Problem solving questions 4 x 10 marks=40 marks Two questions from each module with choice to answer one question. Maximum Total Marks: 70
Text books
1. Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design , **TMH
Reference
1. John F Wakerly, Digital Design- Principles and Practices (Third edition), Pearson 2. Mano M M, Digital Design, PHI 3. Thomas L Floyd & R.P Jain, di gital Fundamentals (Eight edition), Pearson 4. Taub and Schilling, Digital principles and applications , TMH
PART A: Short answer questions (one/two sentences) 5 x 2 marks=10 marks All questions are compulsory. There should be at least one question from each module and not more than two questions from any module.
PART B: Analytical/Problem solving questions 4 x 5 marks=20 marks Candidates have to answer four questions out of six. There should be at least one question from each module and not more than two questions from any module.
PART C: Descriptive/Analytical/Problem solving questions 4 x 10 marks=40 marks Two questions from each module with choice to answer one question.
Maximum Total Marks: 70 Note: More than 75% of the questions shall be analytical/problem oriented types.
Internal Continuous Assessment (Maximum Marks-30)
60% - Tests (minimum 2) 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc. 10% - Regularity in the class
EC09 307(P) DIGITAL ELECTRONICS LAB
Objective
Note : A minimum of 10 experiments must be conducted
Internal Continuous Assessment (Maximum Marks-50)
60% - Laboratory practical and record 30% - Test/s 10% - Regularity in the class
70% - Procedure, conducting experiment, results, tabulation, and inference 20% - Viva voce 10% - Fair record
EN09 401B: Engineering Mathematics IV (Common for IC, EC, EE, AI, BM, CS, and IT)
Objective Objective of this course is to inculcate the students an adequate understanding of the basic concepts of probability theory to make them develop an interest in the area which may find useful to pursue their studies. Also it is intended to stimulate the students understanding of the Z- transform. A study of some important partial differential equations is also included to make the student get acquainted with the basics of PDE.
Module I: Probability Distributions (13 hours) Random variables – Mean and Variance of probability distributions – Binomial Distribution – Poisson Distribution – Poisson approximation to Binomial distribution – Hyper Geometric Distribution – Geometric Distribution – Probability densities – Normal Distribution – Uniform Distribution – Gamma Distribution.
Module II: Z Transforms (14 hours) Introduction – The Z transform – Z transform and Region of Convergence (ROC) of finite duration sequences – Properties of ROC – Properties of Z-Transforms: Linearity, Time Shifting, Multiplication by exponential sequence, Time reversal, Multiplication by n , Convolution, Time Expansion, Conjugation, Initial Value Theorem, Final Value Theorem – Methods to find inverse transforms – long division method – partial fraction method – residue method – Solutions of difference equations using Z Transforms.
Module III: Series Solutions of Differential Equations (14 hours) Power series method for solving ordinary differential equations – Legendre’s equation – Legendre polynomials – Rodrigue’s formula – Generating functions – Relation between Legendre polynomials – Orthogonality property of Legendre polynomials (Proof not required) – Frobenius method for solving ordinary differential equations – Bessel’s equation – Bessel functions – Generating functions – Relation between Bessel functions – Orthogonality property of Bessel functions (Proof not required).
Module IV: Partial Differential Equations (13 hours) Introduction – Solutions of equations of the form F(p,q) =0 ; F(x,p,q) =0 ; F(y,p,q) =0 ; F(z,p,q) =0 ; F 1 (x,q) = F 2 (y,q) ; Clairaut’s form, z = px + qv + F(p,q) ; Legrange’s form, Pp + Qq = R – Classification of Linear PDE’s – Derivation of one dimensional wave equation and one dimensional heat equation – Solution of these equation by the method of separation of variables – D’Alembert’s solution of one dimensional wave equation.
Teaching scheme Credits: 4 3 hours lecture and 1 hour tutorial per week
Text Books
Module I : Richard A Johnson, CB Gupta, Miller and Freund’s Probability and statistics for Engineers, 7e , Pearson Education - Sections: 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 5.1, 5.2, 5.5, 5.
Module II : P Ramesh Babu, R Ananda Natarajan, Signals and Systems, 2e, Scitech Publications. Sections: 10.1, 10.2, 10.3, 10.4, 10.5.1, 10.5.2, 10.5.3, 10.5.4, 10.5.5, 10.5.6, 10.5.7, 10.5.8, 10.5.12, 10.5.13, 10.6, 10.
Module III : Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc. Sections: 4.1, 4.3, 4.4, 4.
Module IV : N Bali, M Goyal, C Watkins, Advanced Engineering Mathematics, A Computer Approach, 7e, Infinity Science Press, Fire Wall Media. Sections: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16. Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc. Sections: 11.2, 11.3, 11.4, 9.8 Ex.3, 11.
Reference books