






































Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Related topics of electrical machines
Typology: Papers
1 / 46
This page cannot be seen from the preview
Don't miss anything!
1. Transformers
01. Ans: (b) Sol: Given data: 400/200 V 50 Hz B (^) max = 1.2 T 800V, 50 Hz linear dimension all double
2
B (^) max2 =? l 2 = 2 l 1 and b2 = 2b (^1) A 1 = l 1 b1 A 2 = 4A 1
2 B AN f
2 B AN f E
max 1 11
max 2 12 11
12 1
2
11
12 1
max 2 1 N
N A
4 A
B 400
(^800)
B (^) max2 = 2 1. 2 4
02. Ans: (c)
Sol: Given data: = b = 2
(^40) c.m
Anet = 0.9
2 2
40
= 7.2 10 -2^ m^2
TURN
03. Ans: (d)
Sol: Induced emf E 2 = dt
Mdi
(Where, dt
di is slope of the waveform)
3
3
As the slope is uniform, the induced voltage is a square waveform. Peak voltage = 800 V Note: As given transformer is a 1: transformer, the induced voltage on both primary and secondary is same.
04. Ans: (a) Sol: i(t) = 10 sin (100 t) A Induced emf on secondary E 2 = M dt
di
(^400) 10 -3 (^) 10 100 cos(100t)
= 400 cos (100t) E 2 = 400 sin (100t + 2
When S is closed, the same induced voltage appears across the Resistive load Peak voltage across A & B = 400V
05. Ans: (a) Sol: E 1 = – dt N d 1
(^) (where E 1 =^ ^ e^ pq)
1
e (^) pq = 30 V (Between 0 & 0.06)
1
e (^) pq = 90 V (Between 0.1 & 0.12)
: 4 : Electrical Machines
08. Ans: (c) Sol: ZT = (0.18+j0.24) and Z (^) L = (4+j3)
line T L
Voltage at the load, Vload = (90.76–37.77) (536.86) = 453.8 –0.91 V And power loss in tr.line = (I (^) line )^2 0. = (90.76) 2 0. = 1482 W
09. Ans: (b) Sol: 200V, 60Hz, Wh 1 = 250W, Wh 2 =? We1 = 90W We2 =?
2
2 1
1 f
V f
V (^)
2
1
1
2 h 1
h 2 f
f V
Wh2 = 348. When f
V (^) ratio is not constant
We v^2 2 1
2 e 1
e 2 V
V W
W
e 2
Wi = Wh2 + We2 = 467.81 W
10. Ans: (a) Sol: V 1 = 440 V ; f 1 = 50Hz ; Wi = 2500 W
V 2 = 220 V ; f 2 = 25Hz ; Wi = 850 W
1
1 2
2 f
V f
V (^) = Constant
Wi = Af + Bf^2 2500 = A 50 + B 502 ….……… (1) 850 = A 25 + B 25 2 …..………(2) By solving (1) & (2) A = 18 ; B = 0. We = Bf^2 = 0.64 502 = 1600 W Wh = Af = 18 50 = 900 W
11. Ans: (b) Sol: Given data: 2 W Wi h 1 ^ ;^2 W Wi e 1
2 h 1
h 2 V
V W
W
h 1
Wh2 = 0.844 Wh1 = 0.422 Wi 2 1
2 e 1
e 2 V
V W
W
We2 = 0.81 We1 = 2 0.81 Wi We2 = 0.40 Wi Wi2 = Wh2 + We2 = 0.422 Wi + 0.40 Wi Wi2 = 0.822 Wi Reduction in iron loss is = 1 – 0. = 0. 0. i.e., 17.3% reduction
12. Ans: (a) Sol: At 50 Hz; Given, Pcu = 1.6% , Ph = 0.9%, Pe = 0.6%
: 5 : Postal Coaching Solutions We know that, Ph f -0.
f
f P
1
2 h
h 2
h 2 Eddy current loss = constant, (since Pe V^2 ) and given total losses remains some. Ph 1 Pcu 1 Pe 1 Ph 2 Pcu 2 Pe 2
2
1 cu
cu I
2
1
Output kVA = VI 2 = 1.028 VI (^1)
13. Ans: (d) Sol: Given data: 20 kVA, 3300/220V, 50Hz No load at rated voltage i,e W 0 = 160Watt cos 0 = 0. % R = 1% %X = 3% Input power = output Power + Total loss of power %.R = %FL cu loss = 100 VArating
FL culoss
FL cu loss = %R VA rating = 0.01 20,000 = 200 Watt I (^) F2 = 90. 9 A 220
VArating 2
Iload = 85 A 220 0. 8
85A Cu loss =? Cu loss at
85A= 200 174. 8 Watt
Total loss when 14.96 kW o/p = Iron l oss + cu l oss at 85A = 160+174. = 334.8 W Input power = 14.96 kW+334.8W = 15294.8W
14. Ans: (a) Sol: Given data: At 50Hz: 16 V, 30 A, 0.2 lag At 25 Hz , 16 V, Isc =? and p.f =?
I
R = Z cos R = 0.533 0. R 1 = 0.106 X 1 = Zsin = 0.533 0.979= 0.522 Reactance at f = 25 Hz
50
1
p.f = 0. 376
cos R (^) sc lag
: 7 : Postal Coaching Solutions Wi + 0.25 WCu = 0.0102 ……… (2)
By solving equation (1) & (2) Wi = 6.8 10 –3^ ; WCu = 0.
75 1 1 6. 8 10 ( 0. 75 ) 0. 0136
75 1 1 3 / (^4) (^3) (^2) = 98.1%
19. Ans: (a) Sol: Percentage of load at which maximum
efficiency possible is = Cu
i W
max (^) 3
= 98.1 %
20. Ans: (d) Sol: Given data: 10 kVA,2500/250 V OC: 250V, 0.8A, 50W SC: 60V, 3A, 45W Iron losses = 50 W = WI 4 A 2500
( HV)^ (Rated current) Copper loss at 3A = 45W Copper loss at 4A =?
45 80 W 9
kVA at (^) max kVAFL culoss Iron^ loss
10 kVA 7. 9 kVA 80
21. Ans: (c) Sol: 100 7. 9 08 10 ( 2 50 )
3
3 0 max. 8 pf^
22. Ans: (c) Sol: Given data: 1000/ 200 V, R 1 = 0.25 ; R 2 = 0.014 , Iron loss = 240W 2 1 R 02 R 1 R = K
I (^) 2 max = R 02
Ironloss
23. Ans: (c) Sol: Given data: Max. = 98 %, at 15 kVA, full load kVA = 20, UPF for 12 hours
15 k 1 2 W i
Wi = 153.06W
allday
output in kWh output kwh losses
kW = kVA cos kW = 20 1 = 20 kW kWh output = 2012 = 240 kWh Wi = 153.06 24 = 3.673 kWh WCu S^2
Cu 2
: 8 : Electrical Machines WCu2 = 272. Transformer is ON load for 0 to 12 hrs. So, WCu2 = 272. 106 12 = 3.265 kWh
3 3 3
3 all day 240 10 3. 673 10 3. 265 10
240 10 %all day = 97.19% 97.2%
24. Ans: () Sol:* Given Iron loss = 1.25 kW, cos = 0. Find equivalent resistance R 01 on H.V side k = 231 0. 11000
k
Full load current on H.V side =
Full load Cu loss = (9.09) 2 17. = 1.415 kW Efficiency = 100 0.85^100 100 0.85 1.415 1.
25. Ans: (c) Sol: Given data: 1100/400 V, 500 kVA, max = 98% 80% of full load UPF % Z = 4.5% PF max V.R = %Z
For min. secondary 10%
0.98 = 0.8 500 10 2IronLoss
3
3
Iron loss = 4081.63 W Cu loss at 80 % of FL = 4081.
(.8) 2 Cu loss of FL = 4081. FL cu loss = 6377. 54 W %R = % FL cu loss = VARating
FLculoss
PF max. VR= 0. 283 lag
26. Ans: (b) Sol: Terminal voltage =? % X %Z^2 %R^2 ( 4. 5 )^2 ( 1. 27 )^2 = 4.317% %VR = %R cos 2 +%Xsin 2 = (1.27 0.283) + (4.317 0.959) % VR = 4.49% = 0 .0449 Pu Total voltage drop on secondary side = PU VR E 2 = 0.0449 400 = 18V V 2 = E 2 Voltage drop = 400 18 = 382V 27. Ans: (a) Sol: R 02 = R 1 ^ + R 2 X 02 = X 1 ^ + X 2 R 1 ^ = K (^2) R 1 (Resistance referred to secondary side)
X 1 k^2 X 1 = (0.01 7.2)
: 10 : Electrical Machines
32. Ans: () Sol:*
The equivalent circuit refer to L.V side is
Where V 1 = voltage applied across the transformer. V 1 = V 2 +I 2 (0.12 cos + 0.5 sin) =2300+48.91[0.120.8+0.50.6) = 2300+19. V 1 = 2319.36V % Regulation= 100 2400
33. Ans: 96.7%
Sol: copper losses = I (1.18^22 0.12)
= (48.91)^2 1. = 3109.8 W
% = 100 90 10 3109. 8
3
3
34. Ans: 218. Sol:
Equivalent circuit refer to H.V side is
Transformer impedance = R 01 + jX 01 = 310.4875. 1 2
t Now V 7600.6^230 8000
35. Ans: 4.9% Sol: Voltage regulation = 100 E
2
2 t
j150
0.12 (^) I (^2)
40
V (^) s
j0.5
P =90kW 2300V 0.8pf
14/2.4kV
V (^) s
1.18 4.408
0.12 j0.5 (^) I (^2)
2300V
V (^1)
7967V
80 j300
350k (^) 70k ZL = 3.2+j1.5
15kVA and 8000/230V
V (^) r
R (^01) X (^01)
Z^1 L 3871. 4 j 1814. 7
80
7967V 350k
j300
Vt
: 11 : Postal Coaching Solutions
C (^2) B 2
A (^2) A
C B
b (^2)
a 2
a c (^2) b
b
c a c
36. Ans: () Sol:* Given data, f = 60 Hz, 30 kVA, 4000 V/120 V, Zpu = 0.0324 pu, I 0 = 0.0046 pu, W 0 = 100 W, Wcu = 180 W P 0 = 20 kW & cos = 0.8lag
Load current I 2 =
Rated load current =
The copper losses for 208.33 A is 208.33 2 180 250
= 124.99 watt
Efficiency =
3 3
The equivalent circuit wrt primary is
Primary rated current
I (^) P =
Given cu losses = 180 W R 1 = (^2) P
Given, Zpu = 0.
Z 1 = (kV)^2
MVA
Load current wrt primary is
2 2
Necessary primary voltage VS = V 2 I 2 R cos 1 X sin 1 = 4000 + 6.24[3.2 0.8 + 16.98 0.6] = 4079.5 V
37. Ans: (b) Sol:
The Possible Connection is Yd
38. Ans: (a)
Sol: R = (^)
3
3 (^2)
0.019 j0. 0.4 10 3 V
E 2
250/36.
VS
20 kW 0.8 pf
4 k/120V
R 01 X 01
Z (^1) 30 kVA
4000V
: 13 : Postal Coaching Solutions
E 0 = (^) VRs E 120 2
VRs E 0 E 120 2
44. Ans: (d) Sol: The flux linkages in phase ‘b’ and ‘c’
windings is 2
(^). Therefore induce voltage
is also becomes half
45. Ans: (b) Sol:
I (^) Y2 is 120 lagging w.r.t I (from 3 system) I (^) Y2 = I 120
And (^) I I 120 180 = I 60
46. Ans: (a) Sol: I (^) rated = I (^) base = 1. Vrated = Vbase = 1. Under short circuit, I (^) scz (^) e1 = Vsc Since I (^) sc = I (^) rated ; 1z (^) e1 = (0.03)(1) Or z (^) e1 = 0. Short circuit pf = cossc = 0.25, sinsc = 0. In complex notation, z (^) e 1 = 0.03(0.25 +j0.968) = (0.0075 + j0.029) pu Similarly z (^) e 2 = 0.04(0.3 + j0.953) = 0.012 + j0.0381 pu (a) When using pu system, the values of z (^) e and z (^) e2 should be referred to the common base kVA. Here the common base kVA may be 200 kVA. 500 kVA or any other suitable base kVA. Choosing 500 kVA base arbitrarily, we get z (^) e 1 200500 ( 0. 0075 j 0. 029 ) = 0.01875 +j0. = 0.07575. z (^) e 2 500500 ( 0. 012 j 0. 0381 ) = 0.0472.54 S = 0. 8
(^560) = 700 kVA
S = 700cos^1 0. = 70036.9 From Eq. e 1 e 2 1 e^2 z z S S z
V 0
V/2 0
V/2 0
I V 0
V 120
IY
I
3- balanced V 120 load
: 14 : Electrical Machines
= (70036.9) (^) o
o
114 74. 74
04 72. 54
= 46036.1 kVA S 2 = (460 )(cos36.1o^ ) at pf cos36.1o^ lag = 372 kW at pf of 0.808 lag (Check. Total power = 190 + 372 = 562 kW, almost equal to 560 kW)
47. Ans: (d)
Sol: Current shared by transformer 1 = 200245
= 1.225 pu Transformer 1 is, therefore, overloaded by 22.5%, i.e., 45 kVA Current shared by transformer 2 = 500460 = 0.92 pu Transformer 2 is, therefore, under loaded by 8%, i.e. 40 kVA. Voltage regulation, from Eq. (1.40), is given by rcos 2 + x sin 2 For transformer 1, the voltage regulation at 1.225 pu current is = 1.225 (r cos 2 + x cos 2 ) = 1.225 (0.0075 0.76 + 0.0290 0.631) = 1.225(0.024119) = 0. Or 2
2 2 E
Or V 2 = (0.970454)(400) = 388.182 V
48. And: (c) Sol: Here I (^) Z (^) e (^) f 1 360 V, IZe (^) f 2 400 V
and I^ Z (^) e f^ 3 480 V Transformer 1 is loaded first to its rated capacity, because I (^) z (^) ef (^) 1 has lowest magnitude. Thus the greatest load that can be put on these transformers without overloading any one of them is, I kVA II^ kVA ^ II kVA 3 ..... z f 3 2 Z f^1 Z f 2 z f 3 1 Z f^1 e
E e e e
400 360 400 360 400 400 480 1060 kVA The total load operates at unity p.f. and it is nearly true to say that transformer 1 is also operating at unity p.f.
49. Ans: (c) Sol: Secondary rated current 60. 6 Amp
Since transformer 1 is fully loaded, its secondary carries the rated current of 60.6 A. For transformer 1,
0. 825
r 3025 e (^22) Full-load voltage drop for transformer 1, E 2 V 2 I 2 re 2 cos 2 I 2 xe 2 sin 2 = (60.6) (0.825) (1) + 0 = 50 V Secondary terminal voltage V 2 = 6600 50 = 6550 V
50. Ans: (a) Sol: Voltage rating of two winding transformer = 600 / 120V, 15 KVA voltage rating of auto
: 16 : Electrical Machines
500V
3
500 440V
743.6 A
I.M
kVA transformed = (1K) kVAAT and kVA conducted = 210– = 200 kVA.
55. Ans: (d) Sol:
Current through 480 V winding is
1000 A 480
kVA rating of auto transformer = 8400 1000 = 8.4 MVA For two winding transformer
= 480 10 W
3
3
W = 10.79 kW Efficiency = 100
4 10 1 10. 79 10
4 10 1 6 3
6
= 99.87%
56. Ans: (a) Sol:
By equation
3 I^1
57. Ans: (a) Sol:
The voltage per turn = 100
For 80 turns = 80 4 1320 V For 60 turns = 60 4 240 V
I (^) d =^320 5.33 A 60
I (^) c=^240 12 A 20
VA rating fo 20 load is 240 I (^) c 240 12 = 2880VA VA rating for 60 load is 320 Id 320 5. 33 = 1705.6 VA Primary current I 1 = Total load VA 400 = 400
8000 V
400
8000 8400V
1000
240 V 60 80
400v50Hz 100 D
20Ω
60Ω
I 1 A Id Ic
B
C 320V
: 17 : Postal Coaching Solutions For resistive load power factor is at unity.
58. Ans: (c) Sol:
Load current = 4 –45 + 1 0 = 4.75 –36. mmf = 400 4.75 –36..55 + 200 0 = 1900 –36.55 + 200 = 1726.3 – j 1131. Total secondary mmf = 2064.07–33. Primary current =^2064 20.64 A 100
59. Ans: (b) Sol:
Sec. mmf = 2000 0 + 20 2 (500)– = 2000 0 + 10000 2 – = 1000 [20 + 10 2 –45] = 1000[2+10–j 10] = 1000[12 – j 10]
mmf = 15620.4 –39. Primary current = 15620.4^ 39. 400
= 39 A at 0.76 lag
60. Ans: (b) Sol: From power balance V 1 I 1 cos 1 = V 2 I 2 cos 2 + V 3 I 3 cos 3 10 : 2 : 1
5
1 N
N 1
10
1 N
N 1
(^3)
cos 2 = 0.8 2 = 36. cos 3 = 0.71 3 = 44.
1 1 1 12 2 10 V 1 I 3 cos 3 VI cos^1 5 V Icos ^1 I 1 cos 1 = 9–36.86 + 5–44. = 13.969 –39.6o I 1 = 14A p.f = cos(39.6) = 0.77 lag
61. Ans: (a) Sol: Given R 1 = 1.6, L 1 = 21mH, R 2 = 1.44m, f = 60Hz, L 2 = 19H, Rc = 160k, L (^) m = 450 H, P = 20 kW,V 2 = 120V and cos = 0.85lag. X 1 = 2fL 1 = 2 60 21 10 -3^ = 7.91 X 2 =2fL 2 = 2 60 19 10 -6^ = 9.55 m The equivalent circuit is,
(^2000) – 0
200
C
1 0
-^4000 ^0
A+ 4 –45 + 1 (^0 4) –45 1000 –45 1 0
6 kW
1000 0 100
400 6000 0
100
20 0
20 2 –45 (^20) – 1000 0 20 0 8000 0 400
20 –
500 1200 0
Vs
1.6 j7.91
I (^) line
160k 450H
HV
1.44m j9.55m
I (^) L
120 0 20kW, 0.85pf
LV 4000/
: 19 : Postal Coaching Solutions N = 1609 rpm
02. Ans: 6.9 (Range: 6 to 7) Sol: Given data: Vt = 250 V, = constant Ra = 0.1 P 1 = 100 kW and P 2 = 150 kW Case (i): P 1 = Vt I (^) a 100 k = 250 I (^) a I (^) a1 = 0.4 103 A Eg1 = Vt + I (^) a1 Ra = 250 + 400 0. = 290 V Case (ii): P 2 = Vt I (^) a 150 103 = 250 I (^) a I (^) a2 = 600 A Eg2 = Vt + I (^) a2 Ra = 250 + 600 0. = 310 V From emf equation of generator, Eg N
290
g 1
g 2 1
% Increase in speed = 100 N
1
1
03. Ans: (a) Sol: Given data: Load current = 250 A Generator (A): 50 kW, 500 V, % drop = 6% Generator (B): 100 kW, 500 V, % drop = 4%
The no-load voltage of generator (A) = (^)
Generator (B) = (^)
6 x 50 k
P 1 = 6 x 6
4 x 100 k
P 2 = 4 x 4
Total load power, 250 500 = 4 x 4 6 x^10010 6
125 = 4 x 4 ( 6 x)^100 6
5 = ( 4 x) 3
( 6 x)
530
6% 4%
520
4
4 x 6 x
x P 2 500 P (^1) 100kW (^) 50kW
: 20 : Electrical Machines
x = 4
Load shared by generator (A), P 1 = (^)
= 43.75 kW Current I = 500
Load shared by generator (B),
P 1 = (^)
= 81.25 kW Current I = 500
04. Ans: (d) Sol: Terminal voltage = 500 + x% of 500
= 500 + 4
(^3) % of 500
= 503.75 V
05. Ans: (b)
Sol: KC
r r KCT
a
a s a e
m t ^
Speed is directly proportional to applied voltage.
06. Ans: 100 Sol: Given data:
Vt = 200 V, Rf = 100 and f
f 1 0. 5 I
N 0 = 1000 rpm and N 1 =1500 rpm Re =?
We know that speed(N)
0
1 1
0 N
1
Field current I (^) f0 = 100
f
t (^) = 2A
f
f 1 0. 5 I
f 0
f 1 f 1
f 0 1
0 1 0. 5 I
(^2) f 1 f 1 1.5I (^) f1 = 1 + 0.5I (^) f I (^) f1 = 1 A Field current I (^) f R f
f
f e f 1
f 0 R
Rf + Re = 2 Rf Re = 100
07. Ans: 32. 95 Nm Sol: Given data: 500 V, 60 hp, 600 rpm Ra = 0.2 and Rsh = 250
Losses = (^)
(^1 1) output power
= 4973.33 watt Input power =
efficiency
Output power