Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

EC202 Summary and Mind Maps, Schemes and Mind Maps of Microeconomics

Detailed mind maps for the EC202 term 1 material

Typology: Schemes and Mind Maps

2020/2021

Uploaded on 05/02/2023

angel-tetimov
angel-tetimov 🇬🇧

5 documents

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download EC202 Summary and Mind Maps and more Schemes and Mind Maps Microeconomics in PDF only on Docsity!

bing sabe Roprete atObi uw % a Repsenvabuey 7 Sersunge woh 5 CONSUMER OPTIMISATION Lexicog caphic” arty 7 fue, 4 SL NECESSARY AND SUPFICIENT CONDITIONS The prepecence “eeponws cos can agord - Z yi Ramen % HEC NE wh cep . 22 implies x%= 9 repierenied by bi, puncte ae eas ult “7 max We) ie, ae 7 7" wmphes % wilieg Fine | conwfaing J PT t+ Py SM Ty, (ADS mean & 7 Ly ge a Le KOR ip gor y Function & implies 8 Lesa a } ~ bey pair or KOR Us P where slope of (C= slope op AC : a Beene Lees non-sasaver of" Kunde, guasi concOre ‘Slope of BC is price ramio - Le { BEA mean ie Swppcient Condition for aLows me or MOT Fey, — ie wper arel Pe {set of venien wae A eoneti6ok x=3 commodiba tw he 9 4 Feb ae Conds * Slope OF ICs rRS 2 MY: —, marginal whl! i . por 224 i a 5 m RLS gor every TAU, — fovral by dipereanictiyf tre GO TUBA op bods e@27u@) “cer or cobb Dougan ux zine wet cack MANSY oe Sines wee Bin -yue) \_, 5 & roctt nonseniatio G Any iactearing Optimal bundle i god tos aad when APR and ‘se suppcient Tonaction of Ue reprerent L. gee * exp conaseon ee FTL nae Weta Neocon goo 2" oR my ae uv ho be 2. PREFERENCES : ithe aie é “ G & is eee prejrence Y dapna, weer Low indliperence HeLawion pepiene over | (80 > bat won't Alwaiga work FeAFECT commembirrs WO ta)= mia Ee, 4x} ee eee > COmek prepOHeAdd> : corsunen Cremer her’ compan Utiuties bundles 2 BATIONALITY SZ Deir average % goods 2 otenes O Compiatenass ~ the S++ two comen tv «Strictly convex peperencey | conuner Cin alway For every EX, ip xy x Fae compart Pe wich X# %, len bof any bundle. KEN a weighed * auectg® AR a (l-w\ ESE LECTURE 1: O Teansinviay ~ ig XeY anh Yue ten Kz Row Sarictly pepe ree ol. i . ly prepe. rererences cut st yh 3 a os Monotone ip Strongly monotone if | gin ou T consunytion Jor ncieae the amount af YI ve You contune of day ore ob every eek gook without decrearing | MOE & herser | Sean be Ue consumpron op ! of &ny utter good _ A wearenod to local} hon Sadao SARECAP OF CONSUMER Thelt ——SSSSZ e~ Budget consoaint Giver the et of bundy comune STATEMENTS SS with bork the sabgied, iets rAbORAL Commuter | Ome Where A i tne aka ‘bundia’ « ‘bundle of &% good” Assure buy constraint is Okt UReOW > aihiney L CONSUMPTION SET AND BUDGET SS Wu ak alway con aor AeA G COnmimprion pet is charged the ¢ cormumpds &~ RE OL goods sure eros Equation is’. wee asnamptn. consuned can & goo B+ + GSM urrounded- —— OMune \ * ; . Re apppee bound gor ig we ove , Walrasian budget Containt /eet consuming» godt 1 goods ten connmpben, & set of puncte cur Consunes CON « apiniteey dinsibe~ CRO AREA (6,25) € Kool Erg EM | ary t Rebl ne. of goods ee is the posite orthant ch be Comune To solve wie Lagrangian or setimas-pna Les tekrecr sugstiTutes find vhichd opting 24 PROVING ANd o1seeSunuce ALPROVING AND 0Isp2GvinGe Ly To prove a seaermrent of foim ADB | Gor rend te Show i hada th every | act (X anh Y) > or a YY not (X or YY = noe (x) ASB ue Say A and B we _— tm each othe, ADB Ace al 16] ak At ay 2.2. THE CONTR APOSITIVE wo CoruGpositie is lagicat twin of & statment To disprove a mor pent of A> 6, you read t pind Qn exampia whee AO te but Bh PAUe Wanye 8 ACB Se Ais SUBSET is Cnet Brace A of becouse ty ae equivalent to each etler Taking conbapesrive of the contraposithe get back te onginal stabenent es ContrOposible of Ag? Lo bg LHD XZ $ Ran CONDMOpOSE OF xLtaxcy similar 2.3 Wa and NEGATION Prooe by comvadicton, _Z/ GY peau A moana Z sg nears ke Yor au ov oy ‘fer Hele dovint | there exists’ emg) ey - 29. Y¥X7O near, for au x grenier than 0 not Xe Negaion for tk stagnent Ve € A, LEG con une dy xEA = x EB aad not — SN&atonop thd y axeA, st. c€B ws WhCK mom ‘thee, d0em’s gut Gr © wy NOTADOR » Ti'Rox whick u in & » E245 an element of" Sut nob « Gis a subset og* in B (xépn ox) © FE -% eat a subnet op”