Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Compressible Flow Study Notes (Thermodynamics + Gas Dynamics), Study notes of Aerodynamics

The notes contain totally 3 parts. Firstly, we are introduced to basic Thermodynamics and some analysis of flows. Then, we are slowly led into the analysis of shocks (Normal, Oblique, Bow) and Expansion waves. Then, there are Fanno flows, Rayleigh flow, etc

Typology: Study notes

2021/2022

Available from 01/10/2023

KNVCSG
KNVCSG 🇮🇳

1 document

1 / 43

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Teamo dyncwnics flrl muekaniet n
Theoryis no pund au achunlly told avalytel fom
Theoy
ather QJult
experimental resulh ahan prediching9
Psume close
cd-nect inuating Containe
+Mou diaphvagn Temoved
P
TTComplicated Spkom shock ¢
erpanion tunute oCtu
diaphiogm
or large time hennodunamu on predict hraleT
lorge
leu peed How Tnhighgzed fle
Vemo dyvamie coraideaaionu Oppesite
heal conkar
or needed (K.E)>>
rio-isssb
sokigh duid age Vaviationy
nTem
Sxen uwhole te
hea
Tco
pf3
pf4
pf5
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1b
pf1c
pf1d
pf1e
pf1f
pf21
pf22
pf23
pf24
pf25
pf26
pf28
pf29
pf2a
pf2b

Partial preview of the text

Download Compressible Flow Study Notes (Thermodynamics + Gas Dynamics) and more Study notes Aerodynamics in PDF only on Docsity!

Teamo dyncwnics^ flrl^ muekaniet^ n

Theoy^ Theoryis^ no^ pund^ au^ achunlly^ told^ avalytel^ fom

ather QJult experimental

resulh a^ han^ prediching

Psume closecd-nect
inu ating Containe
+Mou diaphvagn Temoved

P

T T^ Complicated^ Spkom shock ¢

erpanion tunute^ oCtu

diaphiogm or large time^ hennodunamu^

on predict hraleT

lorge leu peed^ How^ Tn highgzed fle Vemo (^) dyvamie coraideaaionu^ Oppesite

or needed^ heal^ conkar

(K.E)>> rio-isssb sokigh duid^ age^ Vaviationy n (^) Tem Sxen uwhole^ te T (^) hea co

for a (^) simpe (^) System

P- P(V,T)^ E^ ECV,^ P^ T)^ S SCV,P.T)

E (^) E(V,T) -^ Sv,T) Thermal (^) e 7 Specific^

gul. i

chardcte... by^ G.d stare

Calonic sfake tate

T,eNS intentive

E,HVS

ekrenwive E

V V M

dEzd (^) 4dW=de da +^ dw

Treersibily

le an^

ndeastand ietetbrl,

y in a^ proeM by^ produd.

Curen

Cturen hemn

A i^ in slah nevekible proc.^

. i

Curen

finite hea-los CLrent.

d Fre

uwen e ma lew

4 Natual (^) Spont. proCa^ e Con

are ireu.

dtin Cumork^

o

Are

Homentum

Ho
Vebe

Take

Obiente Ho

-v) a T P-f(u,T) 11 only Some d T dT (ate P con da p-c dat

O=

dT+ Simple fo perfec^ gago n=e+Pv= e+RT^ eCT)+ RT^ =h(T)^ only Tating Hha^ complikated^ exp Cd (^) T T Cp-A Cp

eCr)- JCydT C

(T) Ce.d1 4C eCt)-T+C, Calbicall,^ CT)^ CeT^ AC pef

Provring ProM^

in Adiabaic,Reu^ proteu

de (^) =-pdu dq o

(aT
4T

dv -pdu o

dh vdp

H)4T P-vdp^ Onl

eh (^) fC)

diuide bo

e aume^ efecgay

dPd-oP

Tn Adiaaheflo^

E =Ae=w

exersible Inetekabte

e-r= (^) PVfV

Colotaofut qo

T-

Tate (^) M,H

le tate^ Ha al^

le Heat^ otoT Conamay

Ta in^ Contane^ into^ equal Cool Ta

utt

by Heot^ ddtion

No wort

d (^) T dere Ner (^) for T^ T

Pro (^) Ne.

u onsically

Ta-T

Alow here^ we^ l^ okmdul,

are (^) P

UTT #p

Thuy we'll^ ore^ pauhtion^ to

PSde^ beeping (^) co

ition unhk

Calo ree Tcoy

-Vdf

T d-

PV-RT,H AfeRLH^

T

HR (^) uTT

uTT

t.,

for (^) natura, imevecthle^ potel

T A^ T

J +CC ErA

da-o

Sda far (^) Pufrd ga

C C=(sdet

fdu T (^) T

+Rnv

fr Hrarmaly perfeth

05-CyJ)+R»("u)

D C(T)-R(Ple.)

Neteroir (^) (ordihon (Plto Tofel^ condition

Tate uo^ in^ above^

Ad. fne.^ e

LStagnahon o^

rOLRNUOt asthaUpy

fer (^) pe foek (^) ga.

cT+h pTo^ Terp rolerto i^ ternp^ staj.Tep

To (^) +u aCp.T

You (^) Con (^) qek ing

isernhepie

as ge

iteu, hen

maybe yeu

Con we^ stale^ e

PAM=Ie

from euer^ e la

du

Pdy

df+ Pudu =

P - dP

udu

du -dA[A

(l-H)
The aboue

i impovtont

Uually in^ convesging

duck (^) (dA o) in^ ubconic

fow v^ should^

inease (du^ so)

Pu in^ SuPe^ LoniC,

(Hsr) (t-01'2) du

dhw.

duc
Opr Cxpec^
Seurne ning

in (^) diuw'.. dre

oha

wll

m pAu^ ()JT

RST. (TlT)

r H.(14 )

o 1a(T-1)

JRT

m .

o,) SRT (

(0-oLol18).fo T

A (^) Aa

6-

IE

To

ola

P]P.
Hoch num

Rat

fo

Pressur

T

P-Po
  • p (^) (H=1)

AA

alor he^ duch

er Ho (onteqing^ dut^ loot^

ckuh (^) flo 4it^ H^ han

Sped upP^ ,So

Chebed (^) flous m

M)

chote (^) low

(o

M con

M (^) H

M=o (^) A

Dawins h-grap

Atuwoy

fake a^ Cerfain^ gtov ting (^) Pornpoin

Keld ea^ fo^ ote^ tn^ rueruo^ otcble

odiataic,

Some

extel

fr Leth
ho-ho Reut& Tnew
To,Toy

I Rer^ T re

SS Enhopy^ n incre

initiad progerb^

end

achieUrd

tsenfropicall

Aluoays S,-^ S,^ Cus^
tesentoir fo^ achieUtd

S

Fo

ephopit (^) T

P

T

To.

S SS

4 ohex coue hareb (Keu)

>F (Tneu)

Aho hzh^ Atuays

hs he-",^ h,ao,

Addtah (ho, bay

oha e, e,

Reueribir (^) (G:G)

S

O

ldbahi'c Che o,)

Tneu (>S.)

2

SS

Nor2le performauLC

ptelact (^) nae humuleactual

chang

be

jdeal geE)de

ho,-

ha-u h-isen^ ho,-han

U,low
lac

Neloug Cot

C =^ (Nark Vrdeaeutle (che e Mac

ideal

(orkinuite

U (^) U^ P,R-P,.f^ Moon^ a

  • Adiabati

T

RRT P.

4HL

CT+.3RT,^

=CpT H aRT

4

T

UsngOsing^ all^ okoe^ rela

Ex,,Ma)

= (^) 6.(T, M,ML)

HMa 4(M.) 21

Noo (^) f,M)

Al P (^) T (^) To for, fru^ e M,^ only PT'Fo

e +fou^ COmprou10n

ohotk (^) BP H

,S (^) ekpanion

Rantine Hugonip^ relution

+Pu P,^ Pu^ diuide U^ -, Pu, u=Pu

mulhipy

o uus&^1

|uf-u(-D

  • a (^) (-h)

2