Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Classical Mechanics MSc 1 Semester, Lecture notes of Physics

Numerical problems. Chapter 5 Relativistic Formalism

Typology: Lecture notes

2021/2022

Available from 12/15/2022

pirzada-aquib-javid
pirzada-aquib-javid 🇮🇳

1 document

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Ddeumine
the
lungth
and
onilalim
a
1d
lengt
lom
ma
uame
Aaleama
Moing
with
a
eloeuty
0-6c
veloidy
n a
duastn
making
30
angle
widh the Aod.
Jhe
Propur
gth
of
th
Aod
alay
tha
duwd
4
fhe
m
ouing
htane
bo3
Lhmeauned
n
the
mouingne
-
lo
ts
36-o-
lo
Co
36
-
D36
43
ince
the
lengh
does
not
tmhad
L t
the
duuettn
mol
o
the
mouing
faume,
Ly
'lo
kin3o
5m
Hemee,
lenth
ta
dod
obsuued
m
mouúny
ane
S e
Aod
mak
an
aug
0
uth
x-aiu
ol
ka
mouing
hane,
fhe
0-12
B-
tr
(
12)
3
pf3
pf4
pf5

Partial preview of the text

Download Classical Mechanics MSc 1 Semester and more Lecture notes Physics in PDF only on Docsity!

Ddeumine the^ lungth and^ onilalim^ a^ 1d^ lengt^ lom^ ma

uame Aaleama^ Moing^

with a^ eloeuty 0-6c^ veloidy n a^ duastn

making 30 angle^

widh the Aod.

Jhe Propur gth of th^

Aod alay tha^

duwd 4 fhe^ mouing htane^ bo

Lhmeauned n^ the^

mouingne

lo ts 36-o-

loCo^36 -^ D^

ince the^ lengh^

does not^ tmhad^ L^

t the^ duuettn^ mol^

o the^ mouing

faume, Ly 'lo^ kin3o^

5m

Hemee, lenth ta^ dod^

obsuued m^ mouúny ane

S e^ Aod^

mak an^ aug 0 uth^

x-aiu ol ka^ mouing^ hane,^

fhe

0-

B- tr^ ( 12)^3

S

Aspaceship mauing a hm the

easth, n~h

veloci DS faasaiaket wahase (^) veloidy ulde^ ta^ the^ shacs un^ D-Se duay tum the tasth 6)touuds the task Calculate the eloity ocket as obeued ham the eadh in tur tases

Sa Lt (^) e (^) ueloity o he Aorkel as^ obrwuud^ homhe^ tanth^ be^ u

)n (^) the (^1) wei

He u0-Sc^ V«^ 0.$S

0.Sc +0.Sc 0-8c

+0-Sc0.Sc 25

b Sn^ he^ 2hA^ taL^ -^ d.S

Hne V

  • 0.Sc+0 Sc
    • 0Scx0-Sc
  1. A T-mesn oet man m decay nto a u- mesn o mas mu

Aneutino (^) o may (^) my Sho (^) hat tk toal^ megy e u-menom m+m tmJe

A-masm -mtsn + v- uEhuno

he -mesm^ u^ t^ ui^ undaly^ and^ ates^ dauay,^ U-^

mesm and^ uudlune

wil hae^ tal and^ oppode^ momuntun^ (p^

and (^) -p) so^ that^ ke^ {nal net

momwun ii zno.

Sn uw^ o mmewtumm^ &nAy^ Aclakavn

mu ad^ mv^ aue^ ALGt^ mae, EvP tme

% Show that the tuansamatuin dejined 2P Snd

s tanemual^ by uing laimow^

Baaukel

Sat

he tanstermatun a

42P in P-2P^ Cas&

Hom thee^ tAuatuans^ we^

tan tnte^ the^ thanshotmalan^ a

ta

and P

n (^) ndu to show^ that^ the giuwlansormalla^

tanme (^) the

in backet tondiluon

Co,1(P,P

and8,P]-

[PP (^) -() Alo (^) RP3 (^) àL - 28 3P

6ut om tqpalum )

Substiuling e^ value,^ in^ (v)^ we^ get Co[i+ tan&] Nue (^) rou he^ tondehoim^ iy^

which meaa^ that^ tk^ ien

hAmomatin u tananical

a paniie^ (teto)'n^ mauing^ h (^) elou ein^ Tke^ aama and $'^ meuiny^ wih^ c-eloily auliue^ to (^) saloy +K- aa haw that sol: t^ be^ the^ uelouy^ o^ pholan Let vbe the neloiiy hau (Sha) Phd u? Caiven (^) C and v- wig thenrlatuutiu^ weloity^ addituor (^) kmwda, U +V

  • Vu Sblriiny the valun, 2