Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chapter 15-Electrical Circuit Analysis-Problem Solutions, Exercises of Electrical Circuit Analysis

This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Laplace, Transform, Scaling, Property, Signals, Functions, Sinusoidal, Function, Signal

Typology: Exercises

2011/2012

Uploaded on 07/20/2012

anumati
anumati 🇮🇳

4.4

(99)

110 documents

1 / 8

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Chapter 15, Problem 1.
Find the Laplace transform of:
(a) cosh at (b) sinh at
[Hint: cosh x =
()
xx ee
+
2
1, sinh x =
(
)
xx ee
2
1.]
Chapter 15, Solution 1.
(a) 2
ee
)atcosh(
at-at +
=
[]
=
+
+
=as
1
as
1
2
1
)atcosh(L22 as
s
(b) 2
ee
)atsinh(
at-at
=
[]
=
+
=as
1
as
1
2
1
)atsinh(L22 as
a
Chapter 15, Problem 2.
Determine the Laplace transform of:
(a) cos(
θ
ω
+t) (b) sin(
θ
ω
+
t)
Chapter 15, Solution 2.
(a) )sin()tsin()cos()tcos()t(f
θ
ω
θ
ω=
[
]
[
]
)tsin()sin()tcos()cos()s(F
ω
θ
ω
θ= LL
=)s(F 22
s
)sin()cos(s
ω+
θωθ
(b) )sin()tcos()cos()tsin()t(f
θ
ω
+
θ
ω=
[
]
[
]
)tsin()cos()tcos()sin()s(F
ω
θ
+
ω
θ= LL
=)s(F 22
s
)cos()sin(s
ω+
θωθ
pf3
pf4
pf5
pf8

Partial preview of the text

Download Chapter 15-Electrical Circuit Analysis-Problem Solutions and more Exercises Electrical Circuit Analysis in PDF only on Docsity!

Chapter 15, Problem 1.

Find the Laplace transform of:

(a) cosh at (b) sinh at

[ Hint: cosh x = ( )

x x e e

2

, sinh x = ( )

x x e e

− − 2

.]

Chapter 15, Solution 1.

(a) 2

e e cosh(at)

at - at

=

[ ] =

s a

s a

L cosh(at) 2 2 s a

s

(b) 2

e e sinh(at)

at - at − =

[ ] =

s a

s a

L sinh(at) 2 2 s a

a

Chapter 15, Problem 2.

Determine the Laplace transform of:

(a) cos( ω t + θ) (b) sin( ω t + θ)

Chapter 15, Solution 2.

(a) f (t)=cos(ωt)cos(θ)−sin(ωt)sin(θ)

F( s)= cos(θ)L^ [^ cos(ωt)]^ −sin(θ)L[^ sin(ωt)]

F( s) = 2 2 s

scos( ) sin( )

  • ω

θ −ω θ

(b) f (t)=sin(ωt)cos(θ)+cos(ωt)sin(θ)

F( s)= sin(θ)L^ [^ cos(ωt)]^ +cos(θ)L[^ sin(ωt)]

F( s) = 2 2 s

ssin() cos( )

  • ω

θ −ω θ

e tu ( t )

t sin 4

− 2

(c) e tu ( ) t

t cosh 2

− 3 (d) e tu ( t )

t sinh

− 4

(e) te tu ( ) t

t sin 2

Chapter 15, Solution 3.

(a) [^ e cos( 3 t)u(t)]^ =

-2t L (s 2 ) 9

s 2 2

(b) [^ e sin( 4 t)u(t)]^ = -2t L (s 2 ) 16

2

(c) Since [^ ]^2

s a

s cosh(at ) −

L =

[ (^) e cosh( 2 t)u(t)] (^) = -3t L (s 3 ) 4

s 3 2

(d) Since [^ ]^

2 2 s a

a sinh(at ) −

L =

[ e sinh(t)u(t)] =

-4t L (s 4 ) 1

2

(e) [^ ]^

(s 1 ) 4

e sin( 2 t) 2

  • t
L =

If f (t) ←⎯→ F(s)

F(s ) ds

  • d t f(t) ←⎯→

Thus, [^ ]^ [^ (^ ) ]

  • t 2 -^1 2 (s 1 ) 4 ds
  • d L t e sin( 2 t) = + +

2 (s 1 ) ((s 1 ) 4 )

2 2

L [^ t e-tsin( 2 t)]^ = 2 2 ((s 1 ) 4 )

4 (s 1 )

t e u ( t )

4 2 t 3

(c) ( ) ( ) t

dt

d

2 tu t − 4 δ (d)

( ) e u ( ) t

t 1 2

−−

(e) 5 u ( t 2 ) (f) e u ( t )

t 3 6

(g) ( ) t

dt

d n

n

Chapter 15, Solution 5.

(a) [^ ]^

s 4

scos( 30 ) 2 sin( 30 ) cos( 2 t 30 ) 2

L + ° =

[ ]

s 4

scos( 30 ) 1

ds

d t cos( 2 t 30 ) 2 2

2 2 L

2 -^1 s 1 s 4 2

ds

d

ds

d

2 -^12 -^2 s 1 s 4 2

s 4 2 s 2

ds

d

( )

2 3

2

2 2 2 2 2 2 s 4

s 1 2

( 8 s)

s 4

2 s

s 4

s 1 2

s 4

  • 2s 2

2 3

2

2 2 s 4

s 1 2

( 8 s)

s 4

  • 3 s 3 s 2 3 s

2 3

3 2

2 3

2

s 4

4 3 s 8 s

s 4

(-3 3 s 2)(s 4 )

[ (^) t cos( 2 t+ 30 °)] (^) = 2 L ( ) 2 3

2 3

s 4

8 12 3 s 6 s 3 s

(b) [ ] =

5

4 - 2t

(s 2 )

L 3 t e 3 5 (s 2 )

(c) = − ⋅ − = ⎥ ⎦

− δ 4 (s 1 0 ) s

(t) dt

d L 2 tu(t) 4 2 4 s s

(d) 2 e u(t) 2 e u(t) -(t- 1) -t =

L [^2 e-(t-1)u(t)]^ =

s 1

2 e

(e) Using the scaling property,

[ ] = ⋅ ⋅ = ⋅ ⋅ =

2 s

s ( 12 )

L 5 u(t 2 ) 5 s

(f) [^ ]^ =

s 13

6 e u(t)

  • t 3 L 3 s 1

(g) Let f (t)= δ(t). Then, F( s)= 1.

⎥= − − ′ −^ L

δ

− − f(t) s F(s) s f( 0 ) s f( 0 ) dt

d (t) dt

d (^) n n 1 n 2 n

n

n

n

L L

⎥= ⋅ − ⋅ − ⋅ −^ L

δ

− − f(t) s 1 s 0 s 0 dt

d (t) dt

d (^) n n 1 n 2 n

n

n

n

L L

⎥^ =

δ (t) dt

d n

n

L

n s

Chapter 15, Problem 8.

Find the Laplace transform F ( s ), given that f ( t ) is:

(a) 2 tu ( t − 4 )

(b) 5 cos( ) t δ( t − 2 )

(c) e u ( t t )

t

(d) sin( 2 t ) ( ut −τ)

Chapter 15, Solution 8.

(a) 2t=2(t-4) + 8

f(t) = 2tu(t-4) = 2(t-4)u(t-4) + 8u(t-4)

4 4 4 2 2

s s s F s e e e s s s s

− − ⎛^ ⎞ −

(b)

2

0 0

( ) ( ) 5cos ( 2) 5cos 5cos 2 2

st st st s F s f t e dt t t e dt te e t

∞ ∞ − − − − = = − = = =

(c)

t ( t ) e e e

− − − τ −τ

( ) ( ) ( )

t f t e e u t

τ τ

− − − = −

( 1) 1 ( ) 1 1

s s e F s e e s s

τ τ τ

− + − − = =

(d) sin 2 t = sin[2( t − τ ) + 2 ]τ = sin 2( t − τ ) cos 2τ + cos 2( t −τ )sin 2τ

f t ( ) = cos 2 sin 2( τ t − τ ) ( u t −τ ) + sin 2τ cos 2( t − τ ) ( u t −τ)

2 2

( ) cos 2 sin 2 4 4

s s s F s e e s s

τ τ τ τ

− − = +

5cos(2)e

–2s

Chapter 15, Problem 9.

Determine the Laplace transforms of these functions:

(a) f ( ) t = ( t − 4 ) ( ut − 2 )

(b) ( ) 2 ( 1 )

4 = −

g t e ut

t

(c) h ( ) t = 5 cos( 2 t − 1 ) ( ) ut

(d) p ( ) t = 6 [ u ( t − 2 ) − u ( t − 4 )]

Chapter 15, Solution 9.

(a) f (t)=(t− 4 )u(t− 2 )=(t− 2 )u(t− 2 )− 2 u(t− 2 )

F( s) = 2

-2s

2

-2s

s

2 e

s

e

(b) g( t) 2 e u(t 1 ) 2 e e u(t 1 )

-4t -4 -4(t-1) = − = −

G (s) = e (s 4 )

2 e

4

-s

(c) h( t)= 5 cos( 2 t− 1 )u(t)

cos(A −B)=cos(A)cos(B)+sin(A)sin(B )

cos( 2 t− 1 )=cos( 2 t)cos( 1 )+sin( 2 t)sin( 1 )

h( t)= 5 cos( 1 )cos( 2 t)u(t)+ 5 sin( 1 )sin( 2 t)u(t )

s 4

5 sin( 1 ) s 4

s H (s) 5 cos( 1 ) 2 2

H( s) = s 4

s 4

2. 702 s

2 2

(d) p( t)= 6 u(t− 2 )− 6 u(t− 4 )

P (s) =

- 2s -4s e s

e s