




Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Laplace, Transform, Scaling, Property, Signals, Functions, Sinusoidal, Function, Signal
Typology: Exercises
1 / 8
This page cannot be seen from the preview
Don't miss anything!
Chapter 15, Problem 1.
Find the Laplace transform of:
(a) cosh at (b) sinh at
x x e e
−
2
x x e e
− − 2
Chapter 15, Solution 1.
(a) 2
e e cosh(at)
at - at
=
s a
s a
L cosh(at) 2 2 s a
s
(b) 2
e e sinh(at)
at - at − =
s a
s a
L sinh(at) 2 2 s a
a
Chapter 15, Problem 2.
Determine the Laplace transform of:
Chapter 15, Solution 2.
(a) f (t)=cos(ωt)cos(θ)−sin(ωt)sin(θ)
F( s)= cos(θ)L^ [^ cos(ωt)]^ −sin(θ)L[^ sin(ωt)]
F( s) = 2 2 s
scos( ) sin( )
θ −ω θ
(b) f (t)=sin(ωt)cos(θ)+cos(ωt)sin(θ)
F( s)= sin(θ)L^ [^ cos(ωt)]^ +cos(θ)L[^ sin(ωt)]
F( s) = 2 2 s
ssin() cos( )
θ −ω θ
e tu ( t )
t sin 4
− 2
(c) e tu ( ) t
t cosh 2
− 3 (d) e tu ( t )
t sinh
− 4
(e) te tu ( ) t
t sin 2
−
Chapter 15, Solution 3.
(a) [^ e cos( 3 t)u(t)]^ =
-2t L (s 2 ) 9
s 2 2
(b) [^ e sin( 4 t)u(t)]^ = -2t L (s 2 ) 16
2
s a
s cosh(at ) −
[ (^) e cosh( 2 t)u(t)] (^) = -3t L (s 3 ) 4
s 3 2
2 2 s a
a sinh(at ) −
-4t L (s 4 ) 1
2
(s 1 ) 4
e sin( 2 t) 2
If f (t) ←⎯→ F(s)
F(s ) ds
2 (s 1 ) ((s 1 ) 4 )
2 2
L [^ t e-tsin( 2 t)]^ = 2 2 ((s 1 ) 4 )
4 (s 1 )
t e u ( t )
4 2 t 3
−
(c) ( ) ( ) t
dt
d
( ) e u ( ) t
t 1 2
−−
(e) 5 u ( t 2 ) (f) e u ( t )
t 3 6
−
(g) ( ) t
dt
d n
n
Chapter 15, Solution 5.
s 4
scos( 30 ) 2 sin( 30 ) cos( 2 t 30 ) 2
s 4
scos( 30 ) 1
ds
d t cos( 2 t 30 ) 2 2
2 2 L
2 -^1 s 1 s 4 2
ds
d
ds
d
2 -^12 -^2 s 1 s 4 2
s 4 2 s 2
ds
d
( )
2 3
2
2 2 2 2 2 2 s 4
s 1 2
( 8 s)
s 4
2 s
s 4
s 1 2
s 4
2 3
2
2 2 s 4
s 1 2
( 8 s)
s 4
2 3
3 2
2 3
2
s 4
4 3 s 8 s
s 4
(-3 3 s 2)(s 4 )
[ (^) t cos( 2 t+ 30 °)] (^) = 2 L ( ) 2 3
2 3
s 4
8 12 3 s 6 s 3 s
5
4 - 2t
(s 2 )
L 3 t e 3 5 (s 2 )
(c) = − ⋅ − = ⎥ ⎦
− δ 4 (s 1 0 ) s
(t) dt
d L 2 tu(t) 4 2 4 s s
(d) 2 e u(t) 2 e u(t) -(t- 1) -t =
s 1
2 e
(e) Using the scaling property,
2 s
s ( 12 )
L 5 u(t 2 ) 5 s
s 13
6 e u(t)
(g) Let f (t)= δ(t). Then, F( s)= 1.
δ
− − f(t) s F(s) s f( 0 ) s f( 0 ) dt
d (t) dt
d (^) n n 1 n 2 n
n
n
n
L L
δ
− − f(t) s 1 s 0 s 0 dt
d (t) dt
d (^) n n 1 n 2 n
n
n
n
L L
δ (t) dt
d n
n
L
n s
Chapter 15, Problem 8.
Find the Laplace transform F ( s ), given that f ( t ) is:
(a) 2 tu ( t − 4 )
(b) 5 cos( ) t δ( t − 2 )
(c) e u ( t t )
t −
−
(d) sin( 2 t ) ( ut −τ)
Chapter 15, Solution 8.
(a) 2t=2(t-4) + 8
f(t) = 2tu(t-4) = 2(t-4)u(t-4) + 8u(t-4)
4 4 4 2 2
s s s F s e e e s s s s
(b)
2
0 0
( ) ( ) 5cos ( 2) 5cos 5cos 2 2
st st st s F s f t e dt t t e dt te e t
∞ ∞ − − − − = = − = = =
(c)
t ( t ) e e e
( ) ( ) ( )
t f t e e u t
τ τ
− − − = −
( 1) 1 ( ) 1 1
s s e F s e e s s
τ τ τ
− + − − = =
f t ( ) = cos 2 sin 2( τ t − τ ) ( u t −τ ) + sin 2τ cos 2( t − τ ) ( u t −τ)
2 2
( ) cos 2 sin 2 4 4
s s s F s e e s s
τ τ τ τ
− − = +
5cos(2)e
–2s
Chapter 15, Problem 9.
Determine the Laplace transforms of these functions:
(a) f ( ) t = ( t − 4 ) ( ut − 2 )
(b) ( ) 2 ( 1 )
4 = −
− g t e ut
t
(c) h ( ) t = 5 cos( 2 t − 1 ) ( ) ut
(d) p ( ) t = 6 [ u ( t − 2 ) − u ( t − 4 )]
Chapter 15, Solution 9.
(a) f (t)=(t− 4 )u(t− 2 )=(t− 2 )u(t− 2 )− 2 u(t− 2 )
F( s) = 2
-2s
2
-2s
s
2 e
s
e −
(b) g( t) 2 e u(t 1 ) 2 e e u(t 1 )
-4t -4 -4(t-1) = − = −
G (s) = e (s 4 )
2 e
4
-s
(c) h( t)= 5 cos( 2 t− 1 )u(t)
cos(A −B)=cos(A)cos(B)+sin(A)sin(B )
cos( 2 t− 1 )=cos( 2 t)cos( 1 )+sin( 2 t)sin( 1 )
h( t)= 5 cos( 1 )cos( 2 t)u(t)+ 5 sin( 1 )sin( 2 t)u(t )
s 4
5 sin( 1 ) s 4
s H (s) 5 cos( 1 ) 2 2
H( s) = s 4
s 4
2. 702 s
2 2
(d) p( t)= 6 u(t− 2 )− 6 u(t− 4 )
P (s) =
- 2s -4s e s
e s