Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chapter 10 Part 1-Electrical Circuit Analysis-Problem Solutions, Exercises of Electrical Circuit Analysis

This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Frequency, Domain, Matrix, Time, Supernode, Mesh, Node, Constraint, Equation, Current, Source

Typology: Exercises

2011/2012
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 07/20/2012

anumati
anumati 🇮🇳

4.4

(99)

110 documents

1 / 14

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
February 5, 2006
CHAPTER 10
P.P.10.1 2,010)t2sin(10 =ω°⎯→
4jLjH2 =ω⎯→
5.2j-
Cj
1
F2.0 =
ω
⎯→
Hence, the circuit in the frequency domain is as shown below.
At node 1, j2.5-2
10 211 VVV
+=
21 4j)4j5(100 VV
+= (1)
At node 2, 4
3
j2.5-4j
2x212 VVVVV
+
= where 1x VV
=
)3(5.2)(4jj2.5- 21212 VVVVV
+
=
21 )5.1j5.2()4j5.7(-0 VV
+
+
+= (2)
Put (1) and (2) in matrix form.
=
++
+
0
100
5.1j5.2j4)(7.5-
j4-4j5
2
1
V
V
where °
=
=
+
++=Δ 29.05-74.255.12j5.22j4))-j4)(-(7.5()15.j5.2)(4j5(
++
+
=
0
100
5.12j5.22
4j5j47.5
j45.1j5.2
2
1
V
V
°=
°
°
=
+
=01.6032.11)100(
29.05-74.25
96.30915.2
)100(
5.12j5.22
5.1j5.2
1
V
°=
°
°
=
+
=12.5702.33)100(
29.05-74.25
07.285.8
)100(
5.12j5.22
4j5.7
2
V
-
j
2.5
Ω
+
Vx
4
Ω
j
4
Ω
100° A +
3Vx
2
Ω
V1V2
docsity.com
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
Discount

On special offer

Partial preview of the text

Download Chapter 10 Part 1-Electrical Circuit Analysis-Problem Solutions and more Exercises Electrical Circuit Analysis in PDF only on Docsity!

February 5, 2006

CHAPTER 10

P.P.10.1 10 sin( 2 t) ⎯⎯→ 10 ∠ 0 °, ω= 2

2 H ⎯⎯→ jωL=j 4

  • j 2. 5 j C

0. 2 F =

ω

Hence, the circuit in the frequency domain is as shown below.

At node 1, 2 - j2.

V 1 V 1 − V 2

100 = ( 5 +j 4 ) V 1 (^) −j 4 V 2 (1)

At node 2, 4

j 4 - j2.

V 2 (^) V 1 V 2 V x− V 2

= where V x (^) = V 1

  • j2.5 j 4 ( ) 2. 5 ( 3 ) 2 1 2 1 2

V = V − V + V − V

0 = - ( 7. 5 +j 4 ) V 1 (^) +( 2. 5 +j 1. 5 ) V 2 (2)

Put (1) and (2) in matrix form.

  • (7.5 j4) 2. 5 j 1. 5

5 j 4 - j

2

1

V

V

where Δ =( 5 +j 4 )( 2. 5 +j. 15 )−(-j4)(-(7.5+j4))= 22. 5 −j 12. 5 = 25. 74 ∠-29.05°

  1. 5 j 12. 5

7.5 j4 5 j 4

  1. 5 j 1. 5 j

2

1

V

V

  1. 5 j 12. 5

  2. 5 j 1. 5 V 1

  1. 5 j 12. 5

  2. 5 j 4 V 2

- j2.5 Ω

Vx

100 ° A (^) j 4 Ω

+2 Ω 3Vx

V 1 V 2

In the time domain,

v 1 (t) = 11.32 sin(2t + 60.01 ° ) V

v 2 (t) = 33.02 sin(2t + 57.12 ° ) V

P.P.10.2 The only non-reference node is a supernode.

4 j 4 - j 2

15 V 1 V 1 V 2 V 2

15 − V 1 (^) =-j V 1 +j 4 V 2 + 2 V 2

15 = ( 1 −j) V 1 (^) +( 2 +j 4 ) V 2 (1)

The supernode gives the constraint of

V 1 = V 2 + 20 ∠ 60 ° (2)

Substituting (2) into (1) gives

15 =( 1 −j)( 20 ∠ 60 °)+( 3 +j 3 ) V 2

3 j 3

15 ( 1 j)( 20 60 ) V 2

V 1 = V 2 + 20 ∠ 60 °=(- 3. 272 +j 0. 8327 )+( 10 +j 17. 32 )

V 1 = 6. 728 +j 18. 154

Therefore, V 1 = 19.3669.67 ° V , V 2 = 3.376165.7 ° V

P.P.10.3 Consider the circuit below.

For mesh 1, ( 8 − j 2 +j 4 ) I 1 −j 4 I 2 = 0

( 8 +j 2 ) I 1 (^) =j 4 I 2 (1)

8 Ω j 4 Ω

- j 2 Ω

I 1 I 2

10 ∠ 30 ° V

I 3

2 ∠ 0 ° A

Eliminating I 3 from (1) and (2)

( 15 − j 4 ) I 1 (^) +(- 5 +j 4 ) I 2 = 60 (4)

(- 5 + j 4 ) I 1 (^) +( 5 −j 2 ) I 2 =- 10 +j (^12) (5)

From (4) and (5),

  • 10 j
  • 5 j4 5 - j

15 j 4 - 5 j

2

1

I

I

Δ = 58 j 10 58. 86 - 9.

  • 5 j4 5 - j

15 j 4 - 5 j

Δ = 298 j 20 298. 67 - 3.

  • 10 j12 5 - j

60 - 5 j

1

Thus, = Δ

1 I (^) o I 1 5.0745.94 ° A

P.P.10.5 Let , where and are due to the voltage source and

current source respectively. For consider the circuit in Fig. (a).

" o

' I (^) o = I o+ I

' I (^) o

" I o

' I o

For mesh 1, ( 8 + j 2 ) I 1 −j 4 I 2 = 0

I (^) 2 =( 0. 5 −j 2 ) I 1 (1)

For mesh 2, ( 6 + j 4 ) I (^) 2 −j 4 I 1 − 10 ∠ 30 °= 0 (2)

Substituting (1) into (2),

( 6 + j 4 )( 0. 5 −j 2 ) I 1 −j 4 I 1 = 10 ∠ 30 °

  1. 08 j 0. 556 11 j 14

1

' o = + −

I = I =

- j 2 Ω 6 Ω

I 1 10 ∠ 30 ° V

j 4 Ω I^2

I (^) o

'

(a)

For consider the circuit in Fig. (b).

" I o

Let Z 1^ =^8 −j^2 Ω, = + Ω

= = 1. 846 j 2. 769 6 j 4

j 24 Z 2 6 ||j 4

  1. 4164 j 0. 53
  2. 846 j 0. 77

( 2 )( 1. 846 j 2. 769 ) ( 2 ) 1 2

" 2 o = +

Z Z

Z

I

Therefore, 0. 4961 j 1. 086

" o

' I o = I o+ I = +

I (^) o = 1.193965.45 ° A

P.P.10.6 Let , where is due to the voltage source and is due to

the current source. For , we remove the current source.

" o

' v (^) o = vo+v

' v (^) o

" vo

' vo

30 sin( 5 t) ⎯⎯→ 30 ∠ 0 °, ω= 5

  • j j( 5 )( 0. 2 )

j C

0. 2 F = =

ω

1 H ⎯⎯→ jωL=j( 5 )( 1 )=j 5

The circuit in the frequency domain is shown in Fig. (a).

8 Ω j 4 Ω

- j 2 Ω

2 ∠ 0 ° A

I (^) o

"

(b)

Vo

'

30 ∠ 0 ° V

- j Ω j 5 Ω

(a)

P.P.10.7 If we transform the current source to a voltage source, we obtain the

circuit shown in Fig. (a).

(a)

VS

4 Ω - j 3 Ω 2 Ω j Ω

- j 2 Ω

Io

j 5 Ω

V s = I s Z s=(j 4 )( 4 −j 3 )= 12 +j 16

We transform the voltage source to a current source as shown in Fig. (b).

Let Z = 4 −j 3 + 2 +j= 6 −j 2. Then, 1. 5 j 3

6 j 2

s^12 j^16 s = + −

Z

V

I.

Io

IS j 5 Ω

- j 2 Ω - j 2 Ω

(b)

Note that ( 1 j) 3

6 j 3

( 6 j 2 )(j 5 ) || j 5 = +

Z =.

By current division,

( 1. 5 j 3 )

( 1 j) ( 1 j 2 ) 3

( 1 j) 3

o +

I =

13 j 4

20 j 40 I o

I (^) o = 3.28899.46 ° A

P.P.10.8 When the voltage source is set equal to zero,

Z th = 10 +(-j 4 )||( 6 +j 2 )

6 - j

(-j4)(6 j2) th^10

Z = +

Z th = 10 + 2. 4 −j 3. 2

Z (^) th = 12.4 – j3.2 Ω

By voltage division,

6 j 2

(-j 4 )( 30 20 ) ( 30 20 ) 6 j 2 j 4

  • j 4 th −

V =

V th

V th = 18.97-51.57 ° V

P.P.10.9 To find V th, consider the circuit in Fig. (a).

At node 1, 8 j 4

4 j 2

− V V V

  • ( 2 +j) V 1 (^) = 50 +( 1 −j 0. 5 )( V 1 − V 2 )

50 = ( 1 −j 0. 5 ) V 2 (^) −( 3 +j 0. 5 ) V 1 (1)

At node 2, (^0) 8 j 4

1 2 o =

V V

V ,^ where^ V o^ = V 1 − V 2.

Hence, the equation for node 2 becomes

V 1

V 2

4 – j

8 + j

a

b

0.2Vo

(a)

+ V −

o

4 – j

8 + j

a

b

0.2Vo

(b)

+ V −

o

Is VS

P.P.10.10 To find Z N, consider the circuit in Fig. (a).

13 j

( 4 j 2 )( 9 j 3 ) N (^4 j^2 )||(^9 j^3 ) −

Z = + − =

Z (^) N = 3.176 + j0.706 Ω

To find , short-circuit terminals a-b as shown in Fig. (b). Notice that meshes 1 and 2

form a supermesh.

I N

For the supermesh, - 20 + 8 I (^) 1 +( 1 −j 3 ) I 2 −( 9 −j 3 ) I 3 = 0 (1)

Also, I (^) 1 = I 2 +j 4 (2)

For mesh 3, ( 13 − j) I (^) 3 − 8 I 1 −( 1 −j 3 ) I 2 = 0 (3)

Solving for I 2 , we obtain

9 j 3

50 j 62 I N I 2

I N = 8.396 ∠ -32.68 ° A

Using the Norton equivalent, we can find I oas in Fig. (c).

4 Ω j 2 Ω

8 Ω 1 Ω - j 3 Ω

ZN

a

b (a)

4 Ω j 2 Ω

8 Ω 1 Ω - j 3 Ω a

(b) b

I I^ N

2

20 ∠ 0 ° I 1

I 3

- j 4 Ω

IN

10 – j 5 Ω

ZN

(c)

Io

By current division,

  1. 176 j 4. 294

  2. 176 j 0. 706

10 j 5

N N

N o ∠ ° −

= I

Z

Z

I

I o

I (^) o = 1.971-2.10 ° A

P.P.10.

× ×

ω

⎯⎯→ -j20k j( 5 10 )( 10 10 )

j C

10 nF 3 - 9 1

× ×

ω

⎯⎯→ -j10k j( 5 10 )( 20 10 )

j C

20 nF 3 - 9 2

Consider the circuit in the frequency domain as shown below.

As a voltage follower, V 2 (^) = V o

At node 1, 10 - j 20 20

2 V 1 (^) V 1 V o V 1 − V o

4 = ( 3 +j) V 1 (^) −( 1 +j) V o (1)

At node 2,

  • j 10

1 o o−

V − V V

V 1 (^) =( 1 +j 2 ) V o (2)

Substituting (2) into (1) gives

4 = j 6 V o or = ∠- 90 ° 3

V o

10 k Ω 20 k Ω

- j 20 k Ω - j 10 k Ω

Io

Vo

V 2

V 1

2 ∠ 0 ° V

P.P.10.13 The schematic is shown below.

Since. Setup/Analysis/AC Sweep as

Linear for 1 point starting and ending at a frequency of 447.465 Hz. When the schematic

is saved and run, the output file includes

ω= 2 πf= 3000 rad/s ⎯⎯→ f= 477. 465 Hz

Frequency IM(V_PRINT1) IP(V_PRINT1)

4.775E+02 5.440E-04 -5.512E+

Frequency VM($N_0005) VP($N_0005)

4.775E+02 2.683E-01 -1.546E+

From the output file, we obtain

V o = 0.2682∠-154.6° V and I (^) o =0.544∠-55.12° mA

Therefore,

v (^) o (t) = 0.2682 cos(3000t – 154.6 ° ) V

i (^) o (t) = 0.544 cos(3000t – 55.12 ° ) mA

P.P.10.14 The schematic is shown below.

We select ω = 1 rad/s and f = 0.15915 Hz. We use this to obtain the values of

capacitances, where C = 1 ωXc, and inductances, where L = XL ω. Note that IAC does

not allow for an AC PHASE component; thus, we have used VAC in conjunction with G

to create an AC current source with a magnitude and a phase. To obtain the desired

output use Setup/Analysis/AC Sweep as Linear for 1 point starting and ending at a

frequency of 0.15915 Hz. When the schematic is saved and run, the output file includes

Frequency IM(V_PRINT1) IP(V_PRINT1)

1.592E-01 2.584E+00 1.580E+

Frequency VM($N_0004) VP($N_0004)

1.592E-01 9.842E+00 4.478E+

From the output file, we obtain

V x = 9.84244.78 ° V and I (^) x= 2.584158 ° A

P.P.10.15 ⎟(^ × =

×

×

  • 9 3

6

1

2 eq 10 10 10 10

C 1

R

R

C 1 )^ 10 μ F

P.P.10.16 If R = R 1 =R 2 = 2. 5 kΩ and C =C 1 =C 2 = 1 nF

π × ×

π

2 RC

f (^) o 3 - 9 63.66 kHz