








Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Frequency, Domain, Matrix, Time, Supernode, Mesh, Node, Constraint, Equation, Current, Source
Typology: Exercises
1 / 14
This page cannot be seen from the preview
Don't miss anything!
On special offer
February 5, 2006
P.P.10.1 10 sin( 2 t) ⎯⎯→ 10 ∠ 0 °, ω= 2
2 H ⎯⎯→ jωL=j 4
ω
Hence, the circuit in the frequency domain is as shown below.
At node 1, 2 - j2.
100 = ( 5 +j 4 ) V 1 (^) −j 4 V 2 (1)
At node 2, 4
j 4 - j2.
V 2 (^) V 1 V 2 V x− V 2
= where V x (^) = V 1
0 = - ( 7. 5 +j 4 ) V 1 (^) +( 2. 5 +j 1. 5 ) V 2 (2)
Put (1) and (2) in matrix form.
5 j 4 - j
2
1
V
where Δ =( 5 +j 4 )( 2. 5 +j. 15 )−(-j4)(-(7.5+j4))= 22. 5 −j 12. 5 = 25. 74 ∠-29.05°
7.5 j4 5 j 4
2
1
V
5 j 12. 5
5 j 1. 5 V 1
5 j 12. 5
5 j 4 V 2
- j2.5 Ω
Vx
10 ∠ 0 ° A (^) j 4 Ω
+ − 2 Ω 3Vx
In the time domain,
v 1 (t) = 11.32 sin(2t + 60.01 ° ) V
v 2 (t) = 33.02 sin(2t + 57.12 ° ) V
P.P.10.2 The only non-reference node is a supernode.
4 j 4 - j 2
15 − V 1 (^) =-j V 1 +j 4 V 2 + 2 V 2
15 = ( 1 −j) V 1 (^) +( 2 +j 4 ) V 2 (1)
The supernode gives the constraint of
V 1 = V 2 + 20 ∠ 60 ° (2)
Substituting (2) into (1) gives
15 =( 1 −j)( 20 ∠ 60 °)+( 3 +j 3 ) V 2
3 j 3
15 ( 1 j)( 20 60 ) V 2
V 1 = V 2 + 20 ∠ 60 °=(- 3. 272 +j 0. 8327 )+( 10 +j 17. 32 )
V 1 = 6. 728 +j 18. 154
Therefore, V 1 = 19.36 ∠ 69.67 ° V , V 2 = 3.376 ∠ 165.7 ° V
P.P.10.3 Consider the circuit below.
For mesh 1, ( 8 − j 2 +j 4 ) I 1 −j 4 I 2 = 0
( 8 +j 2 ) I 1 (^) =j 4 I 2 (1)
8 Ω j 4 Ω
- j 2 Ω
−
Eliminating I 3 from (1) and (2)
( 15 − j 4 ) I 1 (^) +(- 5 +j 4 ) I 2 = 60 (4)
(- 5 + j 4 ) I 1 (^) +( 5 −j 2 ) I 2 =- 10 +j (^12) (5)
From (4) and (5),
15 j 4 - 5 j
2
1
I
Δ = 58 j 10 58. 86 - 9.
15 j 4 - 5 j
Δ = 298 j 20 298. 67 - 3.
60 - 5 j
1
Thus, = Δ
1 I (^) o I 1 5.074 ∠ 5.94 ° A
P.P.10.5 Let , where and are due to the voltage source and
current source respectively. For consider the circuit in Fig. (a).
" o
' I (^) o = I o+ I
' I (^) o
" I o
' I o
For mesh 1, ( 8 + j 2 ) I 1 −j 4 I 2 = 0
I (^) 2 =( 0. 5 −j 2 ) I 1 (1)
For mesh 2, ( 6 + j 4 ) I (^) 2 −j 4 I 1 − 10 ∠ 30 °= 0 (2)
Substituting (1) into (2),
( 6 + j 4 )( 0. 5 −j 2 ) I 1 −j 4 I 1 = 10 ∠ 30 °
1
' o = + −
- j 2 Ω 6 Ω
−
j 4 Ω I^2
I (^) o
'
(a)
For consider the circuit in Fig. (b).
" I o
Let Z 1^ =^8 −j^2 Ω, = + Ω
= = 1. 846 j 2. 769 6 j 4
j 24 Z 2 6 ||j 4
( 2 )( 1. 846 j 2. 769 ) ( 2 ) 1 2
" 2 o = +
Therefore, 0. 4961 j 1. 086
" o
' I o = I o+ I = +
I (^) o = 1.1939 ∠ 65.45 ° A
P.P.10.6 Let , where is due to the voltage source and is due to
the current source. For , we remove the current source.
" o
' v (^) o = vo+v
' v (^) o
" vo
' vo
30 sin( 5 t) ⎯⎯→ 30 ∠ 0 °, ω= 5
j C
ω
1 H ⎯⎯→ jωL=j( 5 )( 1 )=j 5
The circuit in the frequency domain is shown in Fig. (a).
8 Ω j 4 Ω
- j 2 Ω
I (^) o
"
(b)
Vo
'
−
- j Ω j 5 Ω
(a)
P.P.10.7 If we transform the current source to a voltage source, we obtain the
circuit shown in Fig. (a).
(a)
−
4 Ω - j 3 Ω 2 Ω j Ω
- j 2 Ω
Io
j 5 Ω
V s = I s Z s=(j 4 )( 4 −j 3 )= 12 +j 16
We transform the voltage source to a current source as shown in Fig. (b).
Let Z = 4 −j 3 + 2 +j= 6 −j 2. Then, 1. 5 j 3
6 j 2
s^12 j^16 s = + −
Io
IS j 5 Ω
- j 2 Ω - j 2 Ω
(b)
Note that ( 1 j) 3
6 j 3
( 6 j 2 )(j 5 ) || j 5 = +
By current division,
( 1. 5 j 3 )
( 1 j) ( 1 j 2 ) 3
( 1 j) 3
o +
13 j 4
20 j 40 I o
I (^) o = 3.288 ∠ 99.46 ° A
P.P.10.8 When the voltage source is set equal to zero,
Z th = 10 +(-j 4 )||( 6 +j 2 )
6 - j
(-j4)(6 j2) th^10
Z th = 10 + 2. 4 −j 3. 2
Z (^) th = 12.4 – j3.2 Ω
By voltage division,
6 j 2
(-j 4 )( 30 20 ) ( 30 20 ) 6 j 2 j 4
V th
V th = 18.97 ∠ -51.57 ° V
P.P.10.9 To find V th, consider the circuit in Fig. (a).
At node 1, 8 j 4
4 j 2
50 = ( 1 −j 0. 5 ) V 2 (^) −( 3 +j 0. 5 ) V 1 (1)
At node 2, (^0) 8 j 4
1 2 o =
V ,^ where^ V o^ = V 1 − V 2.
Hence, the equation for node 2 becomes
4 – j
8 + j
a
b
0.2Vo
(a)
o
4 – j
8 + j
a
b
0.2Vo
(b)
−
o
Is VS
P.P.10.10 To find Z N, consider the circuit in Fig. (a).
13 j
( 4 j 2 )( 9 j 3 ) N (^4 j^2 )||(^9 j^3 ) −
Z (^) N = 3.176 + j0.706 Ω
To find , short-circuit terminals a-b as shown in Fig. (b). Notice that meshes 1 and 2
form a supermesh.
For the supermesh, - 20 + 8 I (^) 1 +( 1 −j 3 ) I 2 −( 9 −j 3 ) I 3 = 0 (1)
Also, I (^) 1 = I 2 +j 4 (2)
For mesh 3, ( 13 − j) I (^) 3 − 8 I 1 −( 1 −j 3 ) I 2 = 0 (3)
Solving for I 2 , we obtain
9 j 3
50 j 62 I N I 2
Using the Norton equivalent, we can find I oas in Fig. (c).
4 Ω j 2 Ω
8 Ω 1 Ω - j 3 Ω
a
b (a)
4 Ω j 2 Ω
8 Ω 1 Ω - j 3 Ω a
(b) b
2
−
- j 4 Ω
10 – j 5 Ω
(c)
Io
By current division,
176 j 4. 294
176 j 0. 706
10 j 5
N N
N o ∠ ° −
I o
I (^) o = 1.971 ∠ -2.10 ° A
ω
⎯⎯→ -j20k j( 5 10 )( 10 10 )
j C
10 nF 3 - 9 1
ω
⎯⎯→ -j10k j( 5 10 )( 20 10 )
j C
20 nF 3 - 9 2
Consider the circuit in the frequency domain as shown below.
As a voltage follower, V 2 (^) = V o
At node 1, 10 - j 20 20
2 V 1 (^) V 1 V o V 1 − V o
4 = ( 3 +j) V 1 (^) −( 1 +j) V o (1)
At node 2,
V 1 (^) =( 1 +j 2 ) V o (2)
Substituting (2) into (1) gives
4 = j 6 V o or = ∠- 90 ° 3
V o
−
−
10 k Ω 20 k Ω
- j 20 k Ω - j 10 k Ω
Io
Vo
P.P.10.13 The schematic is shown below.
Since. Setup/Analysis/AC Sweep as
Linear for 1 point starting and ending at a frequency of 447.465 Hz. When the schematic
is saved and run, the output file includes
ω= 2 πf= 3000 rad/s ⎯⎯→ f= 477. 465 Hz
Frequency IM(V_PRINT1) IP(V_PRINT1)
4.775E+02 5.440E-04 -5.512E+
Frequency VM($N_0005) VP($N_0005)
4.775E+02 2.683E-01 -1.546E+
From the output file, we obtain
V o = 0.2682∠-154.6° V and I (^) o =0.544∠-55.12° mA
Therefore,
v (^) o (t) = 0.2682 cos(3000t – 154.6 ° ) V
i (^) o (t) = 0.544 cos(3000t – 55.12 ° ) mA
P.P.10.14 The schematic is shown below.
We select ω = 1 rad/s and f = 0.15915 Hz. We use this to obtain the values of
capacitances, where C = 1 ωXc, and inductances, where L = XL ω. Note that IAC does
not allow for an AC PHASE component; thus, we have used VAC in conjunction with G
to create an AC current source with a magnitude and a phase. To obtain the desired
output use Setup/Analysis/AC Sweep as Linear for 1 point starting and ending at a
frequency of 0.15915 Hz. When the schematic is saved and run, the output file includes
Frequency IM(V_PRINT1) IP(V_PRINT1)
1.592E-01 2.584E+00 1.580E+
Frequency VM($N_0004) VP($N_0004)
1.592E-01 9.842E+00 4.478E+
From the output file, we obtain
V x = 9.842 ∠ 44.78 ° V and I (^) x= 2.584 ∠ 158 ° A
6
1
2 eq 10 10 10 10
P.P.10.16 If R = R 1 =R 2 = 2. 5 kΩ and C =C 1 =C 2 = 1 nF
π × ×
π
f (^) o 3 - 9 63.66 kHz