Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Calculus 3 Exercises: Series and Ordinary Differential Equations, Lecture notes of Law

A collection of exercises on series and ordinary differential equations, covering topics such as convergence tests, comparison tests, power series, fourier series, and ordinary differential equations of various types. The exercises are designed to test understanding of concepts in calculus, particularly in the areas of series and differential equations.

Typology: Lecture notes

2021/2022

Uploaded on 04/09/2024

jo-taro-1
jo-taro-1 🇻🇳

1 document

1 / 10

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
EXERCISES - CALCULUS 3
Chapter 1
Series
1.1 Number series
Exercise 1.1. Test for convergence and find the sum (if exists):
a) 1
1.3+1
3.5+1
5.7+. . .
b)
P
n=1
(sin (n+ 1) sin n)
c)
P
n=1
ln 1 + 1
n
d)
P
n=1
1
n(n+ 1)(n+ 2)
e)
P
n=2
ln 11
n2
f)
P
n=1 9
10n2
5n
g)
P
n=1
(1)n1.3n
10n+2
h)
P
n=1
arctan 1
n2+n+ 1
Exercise 1.2. Test for convergence:
1. Divergence test
a)
P
n=1
(1)n.n
n+ 1
b)
P
n=1
2n+ 3
6n1
c)
P
n=1
cos 1
n2
d)
P
n=1 n+ 1
n+ 2n
e)
P
n=1
(1)ncos 1
n
f)
P
n=1 2n1
2n+ 3n1
2. Comparison tests
a)
P
n=1
n2+n+ 1
n2n+ 2
b)
P
n=1
2n+n+ 2
n4+ 2
c)
P
n=1
n+ 2 n
2n+ 1
d)
P
n=1
ln 1 + 1
n
e)
P
n=1
n
e1
n
f)
P
n=2
arctan(2n)
g)
P
n=2
ln n
n2
h)
P
n=1
1
ln(n+ 1)
i)
P
n=1 1
nsin 1
n
1
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Calculus 3 Exercises: Series and Ordinary Differential Equations and more Lecture notes Law in PDF only on Docsity!

EXERCISES - CALCULUS 3

Chapter 1

Series

1.1 Number series

Exercise 1.1. Test for convergence and find the sum (if exists):

a)

b)

n=

(sin (n + 1) − sin n)

c)

n=

ln

n

d)

n=

n(n + 1)(n + 2)

e)

n=

ln

n^2

f)

n=

10 n^

5 n

g)

n=

(−1)n−^1. 3 n 10 n+

h)

n=

arctan

n^2 + n + 1

Exercise 1.2. Test for convergence:

  1. Divergence test

a)

n=

(−1)n.n n + 1

b)

n=

2 n + 3 6 n − 1

c)

n=

cos

n^2

d)

n=

n + 1 n + 2

)n

e)

n=

(−1)n^ cos

n

f)

n=

2 n − 1 2 n + 3

)n− 1

  1. Comparison tests

a)

n=

n^2 + n + 1 n^2

n + 2

b)

n=

2 n +

n + 2 √ n^4 + 2

c)

n=

n + 2 −

n 2 n + 1

d)

n=

ln

n

e)

n=

√ ne − 1

n

f)

n=

arctan(2−n)

g)

n=

ln n n^2

h)

n=

ln(n + 1)

i)

n=

√^1

n − sin

√^1

n

  1. Ratio test

a)

n=

2019 n n!

b)

n=

3 n

(2n + 1)! n^2 − 1

c)

n=

(n!)^2 (2n + 1)!

d)

n=

n! 3 n^2

e)

n=

nn 4 n.n!

f)

n=

enn! nn

  1. Root test

a)

n=

2 n^2 + 1 3 n^2 + 2

)n

b)

n=

2 n + 1 5 n + 2

) 2 n

c)

n=

4 n

n

)n 2

d)

n=

n + 1 n + 2

)n (^2) − 1

e)

n=

3 n

n − 2 n

)n (^2) +

f)

n=

cos

n

)n 3

  1. Integral test

a)

n=

n(ln n + 1)

b)

n=

n ln^3 n

c)

n=

n ln n ln(ln n)

d)

n=

e−

√n √ n

e)

n=

ln(n!)

  1. Series with sign-changing terms

a)

n=

cos n √ n^3 + 1

b)

n=

sin(2n^2 ) n^2 + 2

c)

n=

(−1)n−^1 .n (n^2 + 1)

d)

n=

(−1)n

n n + 1

e)

n=

(−1)n^ ln n n

f)

n=

n cos(nπ) 2 n^2 + 1

g)

n=

(−1)n.n^3 2 n^ − 1

h)

n=

3 − 2 n 2 n + 5

)n 2

i)

n=

(−1)n 2 n + 1 sin

√^1

n

Exercise 1.3. Test for absolute and conditional convergence:

a)

n=

(−1)nn n^2 + 1

b)

n=

(−1)n

n n + 100

c)

n=

(−1)n−^1 np

d)

n=

(−1)n

2 n + 100 3 n + 1

)n

e)

n=

(−1)n √ n + (−1)n

f)

n=

e

(− √1)n n (^) − 1

Exercise 1.4. Test for convergence

a)

n=

n + 1 (n^2 + 2) ln(n + 3) b)^

n=

n^5 3 n^ + 2n^

c)

n=

4 + cos n n^2 (1 + e−n)

g)

n=

(−1)n (n + 1). 2 n

h)

n=

(−1)n+ (2n − 1)3n

i)

n=

3 n + 1 8 n

j)

n=

(2n)!!

Exercise 1.10. Find the Maclaurin series of the following functions:

a) y = sin^2 x cos^2 x b) y = sin x sin 3x

c) y = e^2 x^ + 3x cos x

d) y = 2 x + 1 x^2 − 3 x + 2

e) y = 2 x − 1 x^2 + 2x − 3

f) y =

x^2 + x + 1

g) y =

4 − x^2

h) y = ln(1 + 2x)

i) y = x ln(x + 2)

j) y = ln(1 + x − 2 x^2 )

k) y = arcsin x

Exercise 1.11. Find the Taylor series of y at the given point:

a) y =

2 x + 3 , x 0 = 4 b)^ y^ = sin^

πx 3 , x 0 = 1 c)^ y^ =^

x, x 0 = 4

Exercise 1.12. Graph each of the following periodic functions and find compute corresponding Fourier series

a) y = x, x ∈ (−π, π), T = 2π

b) y = |x| , x ∈ (−π, π), T = 2π

c) y =

4 , 0 < x < 2 , − 4 , 2 < x < 4

, T = 4

d) y =

2 x, 0 ≤ x < 3 , 0 , − 3 < x < 0

, T = 6

e) y = 2x, 0 < x < 10, T = 10

f) y =

2 − x, 0 < x < 4 , x − 6 , 4 < x < 8

, T = 8

In each part, find the points of discontinuity of the function. To what value does the series converge at those points?

Exercise 1.13. Expand the function into a Fourier series

a) f (x) = x, x ∈ [0, π], f (x) is an odd and periodic function of T = 2π. b) f (x) = 2 − x, x ∈ (0, 2), f (x) is an even and periodic of T = 4. c) f (x) = x + 1, x ∈ [0, π).

d) f (x) = x − 1, x ∈ (0, π) into a Fourier sine series. e) f (x) = x(π − x), x ∈ [0, π] into a Fourier cosine series. Then prove that ∑^ ∞

n=

n^2

π^2 6

Chapter 2

Ordinary differential equations

2.1 First order ODEs

Exercise 2.1. 1) Separable equations

a) 2y(x^2 + 4)dy = (y^2 + 1)dx b) y′^ + ey+x^ = 0 c) 1 + x + xy′y = 0 d) y′^ = cos^2 x cos^2 (2y)

e) y′^ = x^2 y, y(1) = 1 f) xdx + ye−xdy = 0, y(0) = 1. g) y^2

1 − x^2 dy = arcsin xdx, y(0) = 0

h) y′^ = 2 x y + x^2 y , y(0) = −2.

  1. Homogeneous equations:

a) y′^ =

y x

x y

b) xy′^ = x sin y x

  • y

c) 2y′^ +

( (^) y x

d) (x + 2y)dx − xdy = 0

e) xy′^ = y + e yx , y(1) = 0 f) xy′^ = y + 2x^3 sin^2 y x , y(1) = π 2

g) y′^ = y^2 x^2

y x

  • 1, y(1) = 2 h) (2x − y + 4)dx + (x + 2y − 3)dy = 0.
  1. Linear equations:

a) xy′^ − 4 y = 4x^8

b) (x^2 + 1)y′^ + 2xy = ex c) xy′^ − y = x^2 cos x, y(π) = π

d) y′^ + y sin x = sin x, y(0) = 0

e) y′^ −

x y = 2x^2 , y(1) = 2 f) (2xy + 3)dy − y^2 dx = 0.

  1. Bernoulli equations:

a) y′^ +

x

y = y^3 x^2

b) xy′^ + y = −x^3 y^2 , y(1) = 1

c) y′^ + xy = xe−^2 x^2 y

d) xy′^ = x^3 y^2

− 2 y, y(1) = 2.

Exercise 2.8. Solve the ODEs with constant coefficients:

a) y′′^ − 4 y′^ + 3y = (15x + 37)e−^2 x b) y′′^ − y = 4(x + 1)ex c) y′′^ − 2 y′^ + y = (12x + 4)ex

d) y′′^ − y′^ − 2 y = xex^ cos x e) y′′^ + 2y′^ + 10y = e−x^ cos 3x

f) y′′^ + y = 2 cos x cos 2x g) y′′^ + 2y′^ + 2y = 8 cos x − sin x h) y′′^ + y′^ − 2 y = x + sin 2x

i) y′′^ + 3y′^ − 4 y = 3 sin^2 x j) y′′^ + 4y = e^3 x^ + x sin 2x

Exercise 2.9. Solve the ODEs using the method of variation of parameters:

a) y′′^ − 2 y′^ + y = ex x

b) y′′^ − 4 y′^ + 4y = e^2 x x^2 + 1

c) y′′^ + 4y =

cos 2x

d) y′′^ − 3 y′^ + 2y =

1 + e−x

Exercise 2.10. Solve the ODE (2x − x^2 )y′′^ + 2(x − 1)y′^ − 2 y = −2, given two particular solutions y 1 = 1, y 2 = x.

Exercise 2.11. Solve the following Euler equations

a) x^2 y′′^ − 3 xy′^ + 4y = x^3 , y(1) = 1, y′(1) = 2 b) x^2 y′′^ − 2 xy′^ + 2y = 2x ln x

c) x^2 y′′^ − 3 xy′^ + 5y = 8 sin(ln x)

d) y′′^ − y′ x + 1

y (x + 1)^2

x + 1 , x > −1.

2.3 Systems of first order ODEs

Exercise 2.12. Solve the following systems of ODEs (unknown functions of x)

a)

y′^ = 2y + z z′^ = 3y + 4z

b)

y′^ = 2y − z z′^ = 2z − 9 y

c)

y′^ = 2y − 3 z z′^ = 3y + 2z

d)

y′^ = 2y − 4 z + 3ex z′^ = 2y − 2 z

e)

y′^ = 2y + z z′^ = 5y − 2 z + 2e^3 t

f)

y′^ = 2y − 4 z + 3ex z′^ = 2y − 2 z

g)

y′^ =

y 2 y − 3 z z′^ = z 2 y − 3 z

h)

y′^ = z z′^ = − 4 y +

cos^2 2 x

Chapter 3

Laplace transform

3.1 Laplace and inverse Laplace transforms

Exercise 3.1. Using the definition, find the Laplace transforms of the following functions:

a) f (t) = t b) f (t) = e^2 t+3^ c) f (t) = sin(2t).

Exercise 3.2. Find the Laplace transforms of the following functions:

a) f (t) =

t + 3t − 2 t^2

t

b) f (t) = (t + 2)^2 − 2 e^3 t

c) f (t) = (et^ + e−^2 t)^2

d) f (t) = 2 sin 3t. cos 5t

e) f (t) = 2 sin

t + π 3

f) f (t) = e−^2 t^ − 3 u(t − 2)

Exercise 3.3. Find the inverse Laplace transforms of the following functions:

a) F (s) =

s^4

s^52

s

b) F (s) =

s − 4

s + 2

c) F (s) = 5 − 3 s s^2 + 9

d) F (s) = 10 s − 3 s^2 + 25

e) F (s) = e−^2 s^ + 5 s

f) F (s) = e−πs s

2 s + 3 s^2 + 4

3.2 Solving initial value problems with Laplace trans-

form

Exercise 3.4. Solve the following IVPs:

a)

x(3)^ − 6 x′′^ + 11x′^ − 6 x = 0 x(0) = x′(0) = 0, x′′(0) = 2

b)

x(3)^ + x′′^ − 6 x′^ = 0 x(0) = x′(0) = 0, x′′(0) = 3

c)

x(3)^ − x′′^ − x′^ + x = e^2 t x(0) = x′(0) = x′′(0) = 0

d)

x′′′^ − 2 x′′^ + 16x = 0 x(0) = x′(0) = 0, x′′(0) = 20

e)

x(4)^ − 16 x = 240 cos t x(0) = x′(0) = x′′(0) = x(3)^ = 0

f)

x(4)^ + 8x′′^ + 16x = 0 x(0) = x′(0) = x′′(0) = 0, x(3)(0) = 1

Exercise 3.5. Solve the following IVPs

a)

tx′′^ + (t − 2)x′^ + x = 0 x(0) = 0

b)

tx′′^ − (4t + 1)x′^ + 2(2t + 1)x = 0 x(0) = 0

c)

tx′′^ − (3t + 8)x′^ + 3x = 0 x(0) = 0

d)

tx′′^ + (5t − 12)x′^ + 5x = 0 x(0) = 0

e)

tx′′^ + (4t − 2)x′^ + (5t − 4)x = 0 x(0) = 0

f)

ty′′^ − 2 ty′^ + 2y = 1 − e^2 t y(0) = 0

g)

ty′′^ − ty′^ + y = 2 y(0) = 2, y′(0) = − 4

Exercise 3.11. Solve the following IVPs:

a)

x′′^ − 3 x′^ + 2x = u(t − 2) x(0) = 0, x′(0) = 1

b)

x′′^ + 4x = sin t − u(t − 2 π) sin(t − 2 π) x(0) = 0, x′(0) = 0

c)

y′′^ + 2y′^ + 2y = e−(t−1)u(t − 1), y(0) = y′(0) = 0.

d)

x′′^ + 4x′^ + 4x = f (t) x(0) = x′(0) = 0

where f (t) =

t, 0 ≤ t < 2 0 , t ≥ 2

e)

x′′^ + x = f (t) x(0) = 0, x′(0) = 1

where f (t) =

t 2 ,^0 ≤^ t <^6 3 , t ≥ 6

f)

x′′^ + x = f (t) x(0) = x′(0) = 0

where f (t) =

cos t, 0 ≤ t < π 2 0 , t ≥ π 2.

g)

x′′^ + x = t[1 − u(t − 2)] x(0) = x′(0) = 0

h)

x′′^ + 4x = f (t) x(0) = x′(0) = 0

where f (t) =

cos t, 0 ≤ t < π 0 , t ≥ π.

i)

x′′^ + 2x′^ + 5x = f (t) x(0) = x′(0) = 0

where f (t) =

20 cos t, 0 ≤ t < 2 π 0 , t ≥ 2 π.

j)

x′′^ − 2 x′^ + 10x = f (t) x(0) = x′(0) = 0

where f (t) =

255 sin t, 0 ≤ t < 2 π 0 , t ≥ 2 π.