






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
A collection of exercises on series and ordinary differential equations, covering topics such as convergence tests, comparison tests, power series, fourier series, and ordinary differential equations of various types. The exercises are designed to test understanding of concepts in calculus, particularly in the areas of series and differential equations.
Typology: Lecture notes
1 / 10
This page cannot be seen from the preview
Don't miss anything!
Exercise 1.1. Test for convergence and find the sum (if exists):
a)
b)
n=
(sin (n + 1) − sin n)
c)
n=
ln
n
d)
n=
n(n + 1)(n + 2)
e)
n=
ln
n^2
f)
n=
10 n^
5 n
g)
n=
(−1)n−^1. 3 n 10 n+
h)
n=
arctan
n^2 + n + 1
Exercise 1.2. Test for convergence:
a)
n=
(−1)n.n n + 1
b)
n=
2 n + 3 6 n − 1
c)
n=
cos
n^2
d)
n=
n + 1 n + 2
)n
e)
n=
(−1)n^ cos
n
f)
n=
2 n − 1 2 n + 3
)n− 1
a)
n=
n^2 + n + 1 n^2
n + 2
b)
n=
2 n +
n + 2 √ n^4 + 2
c)
n=
n + 2 −
n 2 n + 1
d)
n=
ln
n
e)
n=
√ ne − 1
n
f)
n=
arctan(2−n)
g)
n=
ln n n^2
h)
n=
ln(n + 1)
i)
n=
n − sin
n
a)
n=
2019 n n!
b)
n=
3 n
(2n + 1)! n^2 − 1
c)
n=
(n!)^2 (2n + 1)!
d)
n=
n! 3 n^2
e)
n=
nn 4 n.n!
f)
n=
enn! nn
a)
n=
2 n^2 + 1 3 n^2 + 2
)n
b)
n=
2 n + 1 5 n + 2
) 2 n
c)
n=
4 n
n
)n 2
d)
n=
n + 1 n + 2
)n (^2) − 1
e)
n=
3 n
n − 2 n
)n (^2) +
f)
n=
cos
n
)n 3
a)
n=
n(ln n + 1)
b)
n=
n ln^3 n
c)
n=
n ln n ln(ln n)
d)
n=
e−
√n √ n
e)
n=
ln(n!)
a)
n=
cos n √ n^3 + 1
b)
n=
sin(2n^2 ) n^2 + 2
c)
n=
(−1)n−^1 .n (n^2 + 1)
d)
n=
(−1)n
n n + 1
e)
n=
(−1)n^ ln n n
f)
n=
n cos(nπ) 2 n^2 + 1
g)
n=
(−1)n.n^3 2 n^ − 1
h)
n=
3 − 2 n 2 n + 5
)n 2
i)
n=
(−1)n 2 n + 1 sin
n
Exercise 1.3. Test for absolute and conditional convergence:
a)
n=
(−1)nn n^2 + 1
b)
n=
(−1)n
n n + 100
c)
n=
(−1)n−^1 np
d)
n=
(−1)n
2 n + 100 3 n + 1
)n
e)
n=
(−1)n √ n + (−1)n
f)
n=
e
(− √1)n n (^) − 1
Exercise 1.4. Test for convergence
a)
n=
n + 1 (n^2 + 2) ln(n + 3) b)^
n=
n^5 3 n^ + 2n^
c)
n=
4 + cos n n^2 (1 + e−n)
g)
n=
(−1)n (n + 1). 2 n
h)
n=
(−1)n+ (2n − 1)3n
i)
n=
3 n + 1 8 n
j)
n=
(2n)!!
Exercise 1.10. Find the Maclaurin series of the following functions:
a) y = sin^2 x cos^2 x b) y = sin x sin 3x
c) y = e^2 x^ + 3x cos x
d) y = 2 x + 1 x^2 − 3 x + 2
e) y = 2 x − 1 x^2 + 2x − 3
f) y =
x^2 + x + 1
g) y =
4 − x^2
h) y = ln(1 + 2x)
i) y = x ln(x + 2)
j) y = ln(1 + x − 2 x^2 )
k) y = arcsin x
Exercise 1.11. Find the Taylor series of y at the given point:
a) y =
2 x + 3 , x 0 = 4 b)^ y^ = sin^
πx 3 , x 0 = 1 c)^ y^ =^
x, x 0 = 4
Exercise 1.12. Graph each of the following periodic functions and find compute corresponding Fourier series
a) y = x, x ∈ (−π, π), T = 2π
b) y = |x| , x ∈ (−π, π), T = 2π
c) y =
4 , 0 < x < 2 , − 4 , 2 < x < 4
d) y =
2 x, 0 ≤ x < 3 , 0 , − 3 < x < 0
e) y = 2x, 0 < x < 10, T = 10
f) y =
2 − x, 0 < x < 4 , x − 6 , 4 < x < 8
In each part, find the points of discontinuity of the function. To what value does the series converge at those points?
Exercise 1.13. Expand the function into a Fourier series
a) f (x) = x, x ∈ [0, π], f (x) is an odd and periodic function of T = 2π. b) f (x) = 2 − x, x ∈ (0, 2), f (x) is an even and periodic of T = 4. c) f (x) = x + 1, x ∈ [0, π).
d) f (x) = x − 1, x ∈ (0, π) into a Fourier sine series. e) f (x) = x(π − x), x ∈ [0, π] into a Fourier cosine series. Then prove that ∑^ ∞
n=
n^2
π^2 6
Exercise 2.1. 1) Separable equations
a) 2y(x^2 + 4)dy = (y^2 + 1)dx b) y′^ + ey+x^ = 0 c) 1 + x + xy′y = 0 d) y′^ = cos^2 x cos^2 (2y)
e) y′^ = x^2 y, y(1) = 1 f) xdx + ye−xdy = 0, y(0) = 1. g) y^2
1 − x^2 dy = arcsin xdx, y(0) = 0
h) y′^ = 2 x y + x^2 y , y(0) = −2.
a) y′^ =
y x
x y
b) xy′^ = x sin y x
c) 2y′^ +
( (^) y x
d) (x + 2y)dx − xdy = 0
e) xy′^ = y + e yx , y(1) = 0 f) xy′^ = y + 2x^3 sin^2 y x , y(1) = π 2
g) y′^ = y^2 x^2
y x
a) xy′^ − 4 y = 4x^8
b) (x^2 + 1)y′^ + 2xy = ex c) xy′^ − y = x^2 cos x, y(π) = π
d) y′^ + y sin x = sin x, y(0) = 0
e) y′^ −
x y = 2x^2 , y(1) = 2 f) (2xy + 3)dy − y^2 dx = 0.
a) y′^ +
x
y = y^3 x^2
b) xy′^ + y = −x^3 y^2 , y(1) = 1
c) y′^ + xy = xe−^2 x^2 y
d) xy′^ = x^3 y^2
− 2 y, y(1) = 2.
Exercise 2.8. Solve the ODEs with constant coefficients:
a) y′′^ − 4 y′^ + 3y = (15x + 37)e−^2 x b) y′′^ − y = 4(x + 1)ex c) y′′^ − 2 y′^ + y = (12x + 4)ex
d) y′′^ − y′^ − 2 y = xex^ cos x e) y′′^ + 2y′^ + 10y = e−x^ cos 3x
f) y′′^ + y = 2 cos x cos 2x g) y′′^ + 2y′^ + 2y = 8 cos x − sin x h) y′′^ + y′^ − 2 y = x + sin 2x
i) y′′^ + 3y′^ − 4 y = 3 sin^2 x j) y′′^ + 4y = e^3 x^ + x sin 2x
Exercise 2.9. Solve the ODEs using the method of variation of parameters:
a) y′′^ − 2 y′^ + y = ex x
b) y′′^ − 4 y′^ + 4y = e^2 x x^2 + 1
c) y′′^ + 4y =
cos 2x
d) y′′^ − 3 y′^ + 2y =
1 + e−x
Exercise 2.10. Solve the ODE (2x − x^2 )y′′^ + 2(x − 1)y′^ − 2 y = −2, given two particular solutions y 1 = 1, y 2 = x.
Exercise 2.11. Solve the following Euler equations
a) x^2 y′′^ − 3 xy′^ + 4y = x^3 , y(1) = 1, y′(1) = 2 b) x^2 y′′^ − 2 xy′^ + 2y = 2x ln x
c) x^2 y′′^ − 3 xy′^ + 5y = 8 sin(ln x)
d) y′′^ − y′ x + 1
y (x + 1)^2
x + 1 , x > −1.
Exercise 2.12. Solve the following systems of ODEs (unknown functions of x)
a)
y′^ = 2y + z z′^ = 3y + 4z
b)
y′^ = 2y − z z′^ = 2z − 9 y
c)
y′^ = 2y − 3 z z′^ = 3y + 2z
d)
y′^ = 2y − 4 z + 3ex z′^ = 2y − 2 z
e)
y′^ = 2y + z z′^ = 5y − 2 z + 2e^3 t
f)
y′^ = 2y − 4 z + 3ex z′^ = 2y − 2 z
g)
y′^ =
y 2 y − 3 z z′^ = z 2 y − 3 z
h)
y′^ = z z′^ = − 4 y +
cos^2 2 x
Exercise 3.1. Using the definition, find the Laplace transforms of the following functions:
a) f (t) = t b) f (t) = e^2 t+3^ c) f (t) = sin(2t).
Exercise 3.2. Find the Laplace transforms of the following functions:
a) f (t) =
t + 3t − 2 t^2
t
b) f (t) = (t + 2)^2 − 2 e^3 t
c) f (t) = (et^ + e−^2 t)^2
d) f (t) = 2 sin 3t. cos 5t
e) f (t) = 2 sin
t + π 3
f) f (t) = e−^2 t^ − 3 u(t − 2)
Exercise 3.3. Find the inverse Laplace transforms of the following functions:
a) F (s) =
s^4
s^52
s
b) F (s) =
s − 4
s + 2
c) F (s) = 5 − 3 s s^2 + 9
d) F (s) = 10 s − 3 s^2 + 25
e) F (s) = e−^2 s^ + 5 s
f) F (s) = e−πs s
2 s + 3 s^2 + 4
Exercise 3.4. Solve the following IVPs:
a)
x(3)^ − 6 x′′^ + 11x′^ − 6 x = 0 x(0) = x′(0) = 0, x′′(0) = 2
b)
x(3)^ + x′′^ − 6 x′^ = 0 x(0) = x′(0) = 0, x′′(0) = 3
c)
x(3)^ − x′′^ − x′^ + x = e^2 t x(0) = x′(0) = x′′(0) = 0
d)
x′′′^ − 2 x′′^ + 16x = 0 x(0) = x′(0) = 0, x′′(0) = 20
e)
x(4)^ − 16 x = 240 cos t x(0) = x′(0) = x′′(0) = x(3)^ = 0
f)
x(4)^ + 8x′′^ + 16x = 0 x(0) = x′(0) = x′′(0) = 0, x(3)(0) = 1
Exercise 3.5. Solve the following IVPs
a)
tx′′^ + (t − 2)x′^ + x = 0 x(0) = 0
b)
tx′′^ − (4t + 1)x′^ + 2(2t + 1)x = 0 x(0) = 0
c)
tx′′^ − (3t + 8)x′^ + 3x = 0 x(0) = 0
d)
tx′′^ + (5t − 12)x′^ + 5x = 0 x(0) = 0
e)
tx′′^ + (4t − 2)x′^ + (5t − 4)x = 0 x(0) = 0
f)
ty′′^ − 2 ty′^ + 2y = 1 − e^2 t y(0) = 0
g)
ty′′^ − ty′^ + y = 2 y(0) = 2, y′(0) = − 4
Exercise 3.11. Solve the following IVPs:
a)
x′′^ − 3 x′^ + 2x = u(t − 2) x(0) = 0, x′(0) = 1
b)
x′′^ + 4x = sin t − u(t − 2 π) sin(t − 2 π) x(0) = 0, x′(0) = 0
c)
y′′^ + 2y′^ + 2y = e−(t−1)u(t − 1), y(0) = y′(0) = 0.
d)
x′′^ + 4x′^ + 4x = f (t) x(0) = x′(0) = 0
where f (t) =
t, 0 ≤ t < 2 0 , t ≥ 2
e)
x′′^ + x = f (t) x(0) = 0, x′(0) = 1
where f (t) =
t 2 ,^0 ≤^ t <^6 3 , t ≥ 6
f)
x′′^ + x = f (t) x(0) = x′(0) = 0
where f (t) =
cos t, 0 ≤ t < π 2 0 , t ≥ π 2.
g)
x′′^ + x = t[1 − u(t − 2)] x(0) = x′(0) = 0
h)
x′′^ + 4x = f (t) x(0) = x′(0) = 0
where f (t) =
cos t, 0 ≤ t < π 0 , t ≥ π.
i)
x′′^ + 2x′^ + 5x = f (t) x(0) = x′(0) = 0
where f (t) =
20 cos t, 0 ≤ t < 2 π 0 , t ≥ 2 π.
j)
x′′^ − 2 x′^ + 10x = f (t) x(0) = x′(0) = 0
where f (t) =
255 sin t, 0 ≤ t < 2 π 0 , t ≥ 2 π.