






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
An overview of nucleic acids, with a focus on DNA, and their role in the continuity of life. It explains how DNA carries hereditary information and provides instructions for building and maintaining cells, tissues, and organisms. The document also covers the roles of RNA, the central dogma of molecular biology, and the properties of DNA, including its double helix structure and base pairing specificity. a useful study material for students of molecular biology and related fields.
Typology: Study notes
1 / 11
This page cannot be seen from the preview
Don't miss anything!
Nucleic acids, and DNA in particular, are key macromolecules for the continuity of life. DNA bears the hereditary information that’s passed on from parents to children, providing instructions for how (and when) to make the many proteins needed to build and maintain functioning cells, tissues, and organisms. How DNA carries this information, and how it is put into action by cells and organisms, is complex, fascinating, and fairly mind-blowing, and we’ll explore it in more detail in the section on molecular biology. Here, we’ll just take a quick look at nucleic acids from the macromolecule perspective.
Nucleic acids , macromolecules made out of units called nucleotides, come in two naturally occurring varieties: deoxyribonucleic acid ( DNA ) and ribonucleic acid ( RNA ). DNA is the genetic material found in living organisms, all the way from single-celled bacteria to multicellular mammals like you and me. Some viruses use RNA, not DNA, as their genetic material, but aren’t technically considered to be alive (since they cannot reproduce without help from a host).
From DNA to RNA to proteins
Image of the components of DNA and RNA, including the sugar (deoxyribose or ribose), phosphate group, and nitrogenous base. Bases include the pyrimidine bases (cytosine, thymine in DNA, and uracil in RNA, one ring) and the purine bases (adenine and guanine, two rings). The phosphate group is attached to the 5' carbon. The 2' carbon bears a hydroxyl group in ribose, but no hydroxyl (just hydrogen) in deoxyribose. _ Nitrogenous bases The nitrogenous bases of nucleotides are organic (carbon-based) molecules made up of nitrogen-containing ring structures. Each nucleotide in DNA contains one of four possible nitrogenous bases: adenine (A), guanine (G) cytosine (C), and thymine (T). Adenine and guanine are purines , meaning that their structures contain two fused carbon-nitrogen rings. Cytosine and thymine, in contrast, are pyrimidines and have a single carbon-nitrogen ring. RNA nucleotides may also bear adenine, guanine and cytosine bases, but instead of thymine they have another pyrimidine base called uracil (U). As shown in the figure above, each base has a unique structure, with its own set of functional groups attached to the ring structure. In molecular biology shorthand, the nitrogenous bases are often just referred to by their one-letter symbols, A, T, G, C, and U. DNA contains A, T, G, and C, while RNA contains A, U, G, and C (that is, U is swapped in for T). Sugars
In addition to having slightly different sets of bases, DNA and RNA nucleotides also have slightly different sugars. The five-carbon sugar in DNA is called deoxyribose , while in RNA, the sugar is ribose. These two are very similar in structure, with just one difference: the second carbon of ribose bears a hydroxyl group, while the equivalent carbon of deoxyribose has a hydrogen instead. The carbon atoms of a nucleotide’s sugar molecule are numbered as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”), as shown in the figure above. In a nucleotide, the sugar occupies a central position, with the base attached to its 1′ carbon and the phosphate group (or groups) attached to its 5′ carbon. Phosphate Nucleotides may have a single phosphate group, or a chain of up to three phosphate groups, attached to the 5’ carbon of the sugar. Some chemistry sources use the term “nucleotide” only for the single-phosphate case, but in molecular biology, the broader definition is generally accepted[^1] In a cell, a nucleotide about to be added to the end of a polynucleotide chain will bear a series of three phosphate groups. When the nucleotide joins the growing DNA or RNA chain, it loses two phosphate groups. So, in a chain of DNA or RNA, each nucleotide has just one phosphate group. Polynucleotide chains A consequence of the structure of nucleotides is that a polynucleotide chain has directionality – that is, it has two ends that are different from each other. At the 5’ end , or beginning, of the chain, the 5’ phosphate group of the first nucleotide in the chain sticks out. At the other end, called the 3’ end , the
The two strands of the helix run in opposite directions, meaning that the 5′ end of one strand is paired up with the 3′ end of its matching strand. (This is referred to as antiparallel orientation and is important for the copying of DNA.) So, can any two bases decide to get together and form a pair in the double helix? The answer is a definite no. Because of the sizes and functional groups of the bases, base pairing is highly specific: A can only pair with T, and G can only pair with C, as shown below. This means that the two strands of a DNA double helix have a very predictable relationship to each other. For instance, if you know that the sequence of one strand is 5’-AATTGGCC- 3’, the complementary strand must have the sequence 3’-TTAACCGG-5’. This allows each base to match up with its partner:
These two strands are complementary, with each base in one sticking to its partner on the other. The A-T pairs are connected by two hydrogen bonds, while the G-C pairs are connected by three hydrogen bonds. When two DNA sequences match in this way, such that they can stick to each other in an antiparallel fashion and form a helix, they are said to be complementary.
Hydrogen bonding between complementary bases holds DNA strands together in a double helix of antiparallel strands. Thymine forms two hydrogen bonds with adenine, and guanine forms three hydrogen bonds with cytosine. Properties of RNA Ribonucleic acid (RNA), unlike DNA, is usually single-stranded. A nucleotide in an RNA chain will contain ribose (the five-carbon sugar), one of the four nitrogenous bases (A, U, G, or C), and a phosphate group. Here, we'll take a look at four major types of RNA: messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and regulatory RNAs. Messenger RNA (mRNA) Messenger RNA ( mRNA ) is an intermediate between a protein-coding gene and its protein product. If a cell needs to make a particular protein, the gene encoding the protein will be turned “on,” meaning an RNA-polymerizing enzyme will come and make an RNA copy, or transcript, of the gene’s DNA sequence. The transcript carries the same information as the DNA sequence
Regulatory RNA (miRNAs and siRNAs) Some types of non-coding RNAs (RNAs that do not encode proteins) help regulate the expression of other genes. Such RNAs may be called regulatory RNAs. For example, microRNAs ( miRNAs ) and small interfering RNAs siRNAs are small regulatory RNA molecules about 22 nucleotides long. They bind to specific mRNA molecules (with partly or fully complementary sequences) and reduce their stability or interfere with their translation, providing a way for the cell to decrease or fine-tune levels of these mRNAs.