Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AP Calculus AB Formula List, Cheat Sheet of Calculus

Formula list in definition of derivative and continuity, means value theorem, particles motions, rate in/rate out and hopital's rules

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

ekadant
ekadant 🇺🇸

4.3

(31)

268 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
2020 AP CALCULUS AB FORMULA LIST
______________________________________________________________________________
Definition of the derivative:
0
( ) lim
h
f x h f x
fx h

lim
xa
f x f a
fa xa
(Alternative form)
____________________________________________________________________________
Definition of continuity: f is continuous at c if and only if
1) f (c) is defined;
2)
lim ( ) exists;
xc
fx
3)
lim ( ) ( ).
xc
f x f c
____________________________________________________________________________________________________
Mean Value Theorem: If f is continuous on [a, b] and differentiable on (a, b), then there
exists a number c on (a, b) such that
( ) .
f b f a
fc ba
_____________________________________________________________________________________________________
Intermediate Value Theorem: If f is continuous on [a, b] and k is any number between f (a)
and f (b), then there is at least one number c between a and b such that f (c) = k.
_____________________________________________________________________________________________________
1
2
11
2
nn du
d d d
dx
x nx u
dx dx dx x x
u



 
 
2
f x g x f x f x g x
dd
f x g x f x g x g x f x
dx dx g x gx
df g x f g x g x
dx





 
 
22
[tan ] sec [cot ] csc
d du d du
u u u u
dx dx dx dx
[sec ] sec tan [csc ] csc cot
d du d du
u u u u u u
dx dx dx dx
11
[ln ] [log ] ln
a
d du d du
uu
dx u dx dx u a dx

[ ] [ ] ln
u u u u
d du d du
e e a a a
dx dx dx dx

22
11
[arcsin ] [arccos ]
11
d du d du
uu
dx dx dx dx
uu

22
11
[arctan ] [arccot ]
11
d du d du
uu
dx u dx dx u dx

____________________________________________________________________________________________
Definition of a definite integral:
011
lim lim
nn
xn
k k k k
kk
b
af x dx f x x f x x



pf3

Partial preview of the text

Download AP Calculus AB Formula List and more Cheat Sheet Calculus in PDF only on Docsity!

2020 AP CALCULUS AB FORMULA LIST


Definition of the derivative :

0

( ) lim h

f x h f x f xh

lim x a

f x f a f ax a

(Alternative form)


Definition of continuity : f is continuous at c if and only if

  1. f ( c ) is defined;

  2. lim ( ) exists; x c

f x

  1. lim ( ) ( ). x c

f x f c


Mean Value Theorem : If f is continuous on [ a , b ] and differentiable on ( a , b ), then there

exists a number c on ( a , b ) such that f ( ) c^ f^ ^ b ^^ f^ ^ a . b a

   


Intermediate Value Theorem : If f is continuous on [ a , b ] and k is any number between f ( a )

and f ( b ), then there is at least one number c between a and b such that f ( c ) = k.


1 2

n n

du d d (^) dx d x nx u dx dx (^) u dx x x

  ^ ^ ^  ^ 

 ^ 

 ^ ^  ^ ^ ^ ^ 

2

d d^ f^ x^ g^ x^ f^ x^ f^ x^ g^ x f x g x f x g x g x f x dx dx g x (^) g x

d f g x f g x g x dx

 (^)    ^   

 ^  

[sin ] cos [cos ] sin

d du d du u u u u dx dx dx dx

2 2 [tan ] sec [cot ] csc

d du d du u u u u dx dx dx dx

[sec ] sec tan [csc ] csc cot

d du d du u u u u u u dx dx dx dx

[ln ] [log ] ln

a

d du d du u u dx u dx dx u a dx

[ ] [ ] ln

d (^) u u du d (^) u u du e e a a a dx dx dx dx

2 2

[arcsin ] [arccos ] 1 1

d du d du u u dx (^) u dx dx (^) u dx

2 2

[arctan ] [arc cot ] 1 1

d du d du u u dx u dx dx u dx


Definition of a definite integral:          

0 1 1

lim lim

n n

x k^ k^ n k^ k k k

b

a

f x dx f x x f x x     

 cos^ u du^ ^ sin^ u^ ^ C^ sin^ u du^  ^ cos u^  C

1 , 1 1

n n x x dx C n n

     

du ln u C u

 ^ 

ln

u u u u a e du e C a du C a

 f^ ^ ^ g^ ^ x^ ^ ^ g^ ^ x dx ^^ ^ f^ ^ g^ ^ x^  C


Definition of a Critical Number:

Let f be defined at c. If f ^   c 0 or if f is undefined at c , then c is a critical number of f.


First Derivative Test:

Let c be a critical number of a function f that is continuous on an open interval I

containing c. If f is differentiable on the interval, except possibly at c , then f   c

can be classified:

1) If f  x changes from negative to positive at c , then  c , f   c is a relative

minimum of f.

2) If f  x changes from positive to negative at c , then  c , f   c is a relative

maximum of f.

Second Derivative Test:

Let f be a function such that the second derivative of f exists on an open interval containing c.

1) If f  ^ c  0 and f ^   c  0 , then  c , f   c is a relative minimum.

2) If f ^   c  0 and f ^   c  0 , then  c , f   c is a relative maximum


Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is concave upward on I if (^) f is increasing on the interval and

concave downward on I if f is decreasing on the interval.


Test for Concavity:

Let f be a function whose second derivative exists on an open interval I.

1) If f ^  x   0 for all x in I , then the graph of f is concave upward in I.

2) If f   x   0 for all x in I , then the graph of f is concave downward in I.


Definition of an Inflection Point:

A function f has an inflection point at  c , f   c 

1) if f    c 0 or f   c does not exist and

2) if f  changes sign from positive to negative or negative to positive at x  c

OR if f  x changes from increasing to decreasing or decreasing to increasing at x = c.

First Fundamental Theorem of Calculus:      

b

a

fx dxf bf a

final initial + change

initial final change

b

a b

a

f b f a f x dx

f a f b f x dx

   

    

Second Fundamental Theorem of Calculus:    

x

a

d f t dt f x dx

Chain Rule Version:  

 

g x

a

d f t dt f g x g x dx