Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

All basic formulas of emft, Summaries of Electromagnetism and Electromagnetic Fields Theory

All EMFT FORMULA are present in this pdf to help the students achieve good understanding of problem solving so that they can score good marks in their exams. All the best for your emft examination. Do revise these formulas these are basic formulas to solve any electromagnetic field theory question. This pdf contains all the basic formulas of vector, electrostatic, magnetism.

Typology: Summaries

2023/2024

Uploaded on 02/19/2024

abhishek-raj-25
abhishek-raj-25 🇮🇳

1 document

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Cartesian Cylindrical
Spherical
x
=
r
cosc/
S
r
sin
6
cos
4
=
r
sin4
S
r
sin
6
sin4
z
=
z
=
rcos6
y
ix
=
Cos
Oi-sin
4k
4
=
sin Ocos
ki,+cos
6
cos
4ie
-sin
Ois
iY
=sin
0
i,+
Cos
01
i
=
sin
0
sin
6i,
+
Cos
6
sin
ie
=
S
il41+C541
+cos
6
io
i
1
=
cos
Oi,-
sin
Ois
Cylindrical
Cartesian
Spherical
=~V
Ix+
y7
Sr
sin
6
tan~1
y/x
=
z
=
rcos6
=
cos
(k
,,
+sin
i,
=
sin
Oi,+cos
6ie
i
4
.
=
-sin
ki,,+Cos
4i,
=
i
4
=
i,
=
cos
i,
-sin
iO
Spherical
Cartesian
Cylindrical
If,-
+z"
r
I4x
+y
+z
_1
z
-1
z
0
=
Cos
=
cos
=
cot-'
x/y
i,
=
sinG
cos
kix+sin
6
sin
ci,
=
sin
i,
+Cos
Oi,
+cos
i.
i,
=
cos
6
cos
oi,+cos
6
sin
oi,
=
Cos
Oi,-sin
Oi,
-sin
Oi.
i
=
-sin
46i, +Cos
0i,
=
i
4
,
Geometric
relations
between
coordinates
and
unit
vectors
for
Cartesian,
cylir
drical,
and
spherical
coordinate
systems.
pf3

Partial preview of the text

Download All basic formulas of emft and more Summaries Electromagnetism and Electromagnetic Fields Theory in PDF only on Docsity!

Cartesian Cylindrical Spherical

x = r cosc/ S^ r^ sin^6 cos^4

= r sin4 S^ r^ sin^6 sin

z =^ z^ =^ rcos

y

ix =^ Cos^ Oi-sin 4k^4 =^ sin Ocos^ ki,+cos^^6 cos^ 4ie

-sin Ois

iY =sin^^0 i,+^ Cos^^01 i^ =^ sin^^0 sin^ 6i,^ +^ Cos^^6 sin^ ie

= S il41+C541 +cos^^6 io

i^1 = cos Oi,- sin Ois

Cylindrical Cartesian^ Spherical

=~V Ix+ y7 Sr^ sin^6

tan~1 y/x

= z = rcos

= (^) cos (k (^) ,, +sin i, = sin (^) Oi,+cos 6ie i 4.

= -sin ki,,+Cos 4i, = i 4

= i, =^ cos^ i,^ -sin^ iO

Spherical Cartesian Cylindrical

r (^) I4x +y +z^ If,-^ +z"

_1 z (^) -1 z 0 = Cos =^ cos

= cot-' (^) x/y

i, = sinG cos kix+sin 6 sin ci, = sin i, +Cos Oi,

+cos i.

i, = cos 6 cos oi,+cos 6 sin oi, = Cos Oi,-sin Oi,

-sin Oi.

i (^) = -sin (^) 46i, +Cos 0i, = i 4 ,

Geometric relations between coordinates and unit vectors for Cartesian, cylir drical, (^) and spherical coordinate systems.

Cartesian Coordinates (x, y, z)

Vf = Ofi.+ Ofi,+ Ofi.

ax ay Oz

+-A=,++-i

V- aA,,^ aA,^ aA,^2

ax ay az

VxA =i. ay_ a (aA ,(- _)+i^ aA^ aA)

(LAI ay az )+ )^ az _ 8A\a.x)^ -(

ay

V2f+!L+f+ a^2 f Ox2 j Z

CylindricalCoordinates (r, 4, z)

Of. 1 Of. Of

Vf= r+ i,+ iz

+A MA.

V -A=^ Ia(rA,.)+^ -.

r Or r ao az

VxA=i -^ +ixaz^ Or^ +^ OA^ r^ a

0/f a Of^1 a

2 f a^2 f

V'f= r + +

r Or On) r^^42 O

Spherical Coordinates (r, 0, 4,)

Vf=i,.+ afi+

Or r aO r sin 0 a

V A = (r2A,)+^1 (sin^ OA.)^^1 oA*

r2 ar r sin 0 aI r sin 0 a

VxA=i1 a(sin^ OAs)^

aA.

'r sineL 80 a

I rIAM, a(rA) 1 [a(rA#) OA,.

r sin{ 0r] rL Or aeJ

(^2) f

V f =^ r^ +^ r^ s^ n^ s^ in0^ )^ +Of^ I^ a

rf ar' Or. r- -s i n aG ai r sin 04, 0